
Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

OSGi, Java 9 and the Future of
Modularity

Neil Bartlett http://www.paremus.com
info@paremus.com

http://www.paremus.com
mailto:info@paremus.com

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Introduction

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Java has a Problem…

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Java’s Getting Larger

D
ow

nl
oa

d
Si

ze
 (M

B)

0

75

150

225

300

JDK Release
1.1.8 1.2.2 1.3.1 1.4.2 5 6 7 8

Solaris Linux Mac OSX

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Who Really Cares?

• Not Enterprise.

• Disk and memory are cheap.

• Competition is mostly .Net.

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

IoT Cares…

• Limited memory, CPU.

• Little or no storage!

• Economies of scale… 100,000s of
devices * $5 saving per device?

• Java’s competition is no longer
(just) .Net.

• Includes NodeJS, Go, Rust…

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Java Modularity

• OSGi: Started in late 1990’s with JSR 8.

• OSGi Alliance formed and Release 1 published in 2000.

• Now on Release 6, working towards Release 7.

• … but we never could modularise the JDK!

• Reasons include political, commercial and technical concerns.

• Let’s just focus on the technical.

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

JDK Modularity

• Sun (later Oracle) led several aborted projects in mid 2000s.

• JSR 294 “Superpackages” – dead

• JSR 277 “Java Module System” – dead

• JSR 376 “Java Platform Module System” (JPMS).

• Jigsaw prototype — targeting Java 7 in 2011.

• Slipped to Java 8.

• Slipped again to Java 9.

• Java 9 delayed by a year (so far).

• Clearly not a trivial problem!

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

JPMS and OSGi

• JPMS’s primary goal is to modularise the JDK.

• It can also be used by libraries and applications.

• So how does this affect OSGi and its users?

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Basics

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

What’s a Module?

“A unit of encapsulation that communicates with
other modules through agreed contracts.”

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

What’s a Module?

“A unit of encapsulation that communicates with
other modules through agreed contracts.”

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

What’s NOT a Module?

• Monolithic Java applications (classpath).

• No encapsulation – everything can interact with anything.

• Communication is ad hoc.

• Contracts may be used.

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Encapsulation / Isolation

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Isolation

• Isolation is a continuum.

• Principle – Freedom from
Interference

• Isolation has a cost!

Monolithic
Method

Classes

OSGi

Isolation

Cost

Process

VM Physical
Server

Regional
Datacentre

Datacentre on
Mars

Container

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Isolation

• OSGi and JPMS provide code-level isolation.

• Neither prevents modules from:

• Consuming all available memory;

• Creating 1000s of threads;

• Calling System.exit()!

• Both do prevent:

• Accessing “internal” types from outside a module.

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

OSGi Isolation: Visibility

• OSGi creates a ClassLoader per bundle

• Each bundle has a Class Space: the set of classes visible to it.

• Equal to the private contents of the bundle + explicitly imported types.

• Bundle 1 cannot see Bundle 2’s private types.

• As if they don’t exist.

private types

Bundle 1 Bundle 2

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

JPMS Isolation: Access

• Modules on the module path live in a single ClassLoader

• Modules can see but not access another module’s private types.

• Class.forName() … works!

• clazz.newInstance() … fails with IllegalAccessException.

• ICYWW, setAccessible(true) also fails.

private types

Module 1 Module 2

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Implications for OSGi

• In OSGi this works:

• Why would you do this?

• Static linking is a useful technique;

• Avoid external dependency;

• Avoid versioning issues.

com.google.common.base

…

com.google.common.base

…

private packageLegend:

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Implications for OSGi

• In OSGi this also works:

• Does add some complexity, but manageable.

• Sometimes our dependencies cannot be reduced to a single version of
every API.

org.example.api 1.0 org.example.api 1.5

Legend: exported package

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Implications for OSGi

• Even this works

• B1 sees packages a, b and c(1.0).

• B2 sees packages b and c (2.0).

• B3 sees package c (2.0).

• Package c in B1 and B3 can be entirely different.

b

c

b

c 2.0

a

c (1.0)

Bundle 1 Bundle 2 Bundle 3

Legend: imported package

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Implications for OSGi

• In OSGi this doesn’t work:

org.example.api 1.0

org.example.api 1.5

Class.forName(
org.example.api.Foo)

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Implications for OSGi

• Why not?

• Type name is not unique.

• If we specify a bundle we are fine!

• Why is this a problem?

• Many libraries assume it “just works”.

• OSGi ClassLoader is forced to guess. Sometimes it guesses wrong.

• Probably the biggest source of frustration for new OSGi users!

• But what are we to do??

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Implications for JPMS

• In JPMS this doesn’t work:

•java.lang.reflect.LayerInstantiationException: Package
com.google.common.base in both module a and module b.

• Unless we manage our own ClassLoaders.

• … like OSGi does!

com.google.common.base

…

com.google.common.base

…

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Implications for JPMS

• And this doesn’t work:

• Unless we manage our own ClassLoaders…

org.example.api 1.5org.example.api 1.0

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Contracts & Dependencies

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Contracts & Dependencies

• Any fool can build a wall.

• Working together is harder.

• How do we reintroduce connections in a controlled way?

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Exports

• Both JPMS and OSGi share Java packages.

• In both cases, any non-exported packages are “private”.

OSGi
Export-Package: org.example.api

// JPMS
module A {
 exports org.example.api;
}

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Imports

• In OSGi the complement of exporting packages is importing packages.

• This creates a “wire” across which class loading requests can be delegated.

Import-Package: org.example.api

org.foo org.foo

A B

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Requires

• OSGi also supports Require-Bundle. Imports all exported packages of a bundle.

• Require-Bundle is deprecated. Eclipse developers: this includes you!

Require-Bundle: B

org.foo org.foo

A B

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Refactoring with Import-Package

org.fooorg.foo

A B

org.bar org.bar

org.foo

A
B

org.foo

org.bar

A'

org.bar

import

import

import

Before

After

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Refactoring with Require-Bundle

org.foo

A B

org.bar

org.foo

A B

A'

org.bar

require

require

Before

After

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Requires

• JPMS only supports requires – equivalent to Require-Bundle

• Same problems!

• “requires” public means re-export

module B {
 requires org.example.api;
 requires public org.example.foo.api;
}

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Versioning

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Versioning

• OSGi supports versioning: of bundles and packages.

• Export packages with a version e.g. 1.0.1

• Import packages with a version e.g. [1, 2)

• Tooling detects how we use the package and generates the correct range.

org.foo [1,2) org.foo 1.0

org.foo 2.0

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Versioning

• JPMS does not support versions in module-info.java.

• A version can be supplied at build-time with a command-line param.

• … but it’s not used anywhere.

• Multiple versions of a module are not supported.

• Version selection by the module system is out of scope.

• Somebody (Maven?) has to create a set of modules that will work.

• That set must contain at most one version of each module.

• Maven isn’t very good at this!

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Dynamics

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Dynamics

• OSGi bundles can be dynamically installed, updated, uninstalled.

• “But I’m an enterprise developer, I never want to do this”.

• Fair point! Nobody’s forcing you.

• OSGi originally designed for home gateways, similar to modern IoT.

• Installing and updating minimal set of dependencies is invaluable.

• Especially over low-speed, intermittent networks.

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Dynamics

• So… dynamics are just for IoT?

• No! OSGi Services represent the change state of the world:

• Remote Service availability (microservices!)

• Network status

• Market opening hours

• …

• OSGi encourages a robust programming model that adapts to the real world

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

JPMS Dynamics

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Reflection

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Reflection

• This is the big one!

• First, OSGi:

A

B

Bundle bundleA = // blah

Class c = bundleA.loadClass(

 “org.example.internal.FooImpl”);

FooImpl f = c.newInstance();

f.doSomething(); // OK! org.example.internal

org.example.internal

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Reflection

• Note:

• No import of org.example.internal.

• org.example.internal isn’t exported.

• This is always possible if we know the origin bundle and type.

• Use case: Declarative Services

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Declarative Services in a Nutshell

<component>
 <implementation class=
 “org.example.internal.Foo”/>
</component>

@Component
public class Foo { }

bnd build

Foo

SCR

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Declarative Services

• Doesn’t this break encapsulation? We can access any type!

• Debatable… but practically speaking, no.

• Origin bundle declares the type explicitly, otherwise it’s unknown.

• Reflection could be used to do bad things…

• … but you can’t claim you didn’t know what you were doing.

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Other Use-Cases

• Dependency Injection frameworks (all of them).

• Object/Relational Mapping … Hibernate, JPA, etc.

• Serialization… JAXB, Protocol Buffers, etc.

• Eclipse Extension Registry (plugin.xml)

• In other words: most of our critical infrastructure!

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

The JPMS Approach

• JPMS automatically adds a “read edge” when we reflect on a module.

• But the private packages remain inaccessible, period.

• Probably the biggest area of contention in JSR 376.

• See http://bit.ly/jpms-reflect *

* http://openjdk.java.net/projects/jigsaw/spec/issues/#ReflectiveAccessToNonExportedTypes

http://bit.ly/jpms-reflect
http://openjdk.java.net/projects/jigsaw/spec/issues/#ReflectiveAccessToNonExportedTypes

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Non-Solution: Services

• ServiceLoader has privileged access to named types inside module
private packages.

• No help. Services in J2SE are very, very limited.

• No lifecycle control, no dependency injection…

• DI module has to declare “uses” for each interface type.

* http://openjdk.java.net/projects/jigsaw/spec/issues/#ReflectiveAccessToNonExportedTypes

module A {
provides org.example.api.Foo
 with org.example.internal.FooImpl;

}

http://openjdk.java.net/projects/jigsaw/spec/issues/#ReflectiveAccessToNonExportedTypes

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Possible Solution: Export and be Damned!

• We could just export all the packages!

• Inadvisable… now all internal packages are public API.

• Encapsulation is gone, both at build and run time.

module A {
exports org.example.internal;
// I hope nobody depends on this!

}

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Possible Solution: Qualified Export

• Exports can be qualified: only accessible to specific, named modules.

• Problem: we need to know all the possible requirers in advance!

• Doesn’t work for specifications with multiple implementations, like JPA.

module A {
exports org.example.internal to
 org.hibernate;
 // Bad luck EclipseLink!

}

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Possible Solution: Dynamic Export

• Proposed and implemented by Oracle … then killed just last month.

• Idea: exports that are effective at runtime but not build time.

• Have to explicitly list every package to be treated this way.

• Weakens “fidelity across all phases” but this is closest to OSGi.

module A {
exports dynamic org.example.internal;
exports dynamic org.example.impl.a;
exports dynamic org.example.impl.b;
// Hope I got them all!

}

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Possible Solution: Weak Modules

• Oracle’s current proposal (killed last week!)

• Idea: weak modules have no private packages, everything is exported.

• Envisioned as a transitional step to “strong” modules.

• Question: if we use DI, ORM, serialization etc, can we ever get rid of
“weak” modules??

weak module A {
// The jokes write themselves…

}

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Possible Solution: Open Modules

• Oracle’s even more current proposal (since Thursday, around tea-time).

• Like “dynamic” exports, i.e. open for reflection but not at compile-time.

• In an open module, all packages are open.

• Normal modules can open specific packages.

open module A {
// Can still explicitly export…
exports org.example.api;

}
module B {
 opens org.example.impl;
}

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Possible Solution: Privileged Modules

• Community proposal from Nikita Lipsky.

• Idea: bless certain modules as “privileged”. They, and only they, can
access private packages of any module.

• Perhaps a command line switch to permit privileged modules?

• Attraction: only a small number of modules ever need this.

• Why should only ServiceLoader be allowed to do this?

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Interoperability,

OR,

Can Dogs and Cats Live Together??

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

YES

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Basic Interop

• Java 9 is backwards compatible, if you use only standard Java SE APIs.

• OSGi uses only standard Java SE APIs.

• Therefore OSGi runs unchanged on Java 9!

• Give or take the usual bugs, it’s only Early Access:

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Compatibility Issues

• Java 9 may not be backwards compatible for code that uses non-
standard APIs.

• E.g.: sun.misc.Unsafe

• Same advice for OSGi developers as all other Java developers.

• As an OSGi dev you have a much better idea of your dependencies
already!

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Can We Do Better?

• YES!

• Background: “platform” dependencies are handled 2 ways in OSGi:

• 1. The Execution Environment: a capability published by the Framework.

• Example: Require-Capability: osgi.ee;
filter:=“(&(osgi.ee=JavaSE)(version=1.8))"

• Generated by tooling (fortunately!)

• Bundle now only resolves on Java 8, can access APIs e.g.
java.util.function.

• 2. Import-Package for everything outside java.*.

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Can We Do Better?

• Import-Package still works great.

• The execution environment concept is probably obsolete.

• Can no longer talk about monolithic platform with a single version.

• Need to depend on platform modules… i.e. JPMS.

• Proposal: Require-PlatformModule

• Example: Require-PlatformModule: java.httpclient;
version=1.9

• Bundle should no longer resolve on a platform that lacks the
java.httpclient module.

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Can We Do Better?

org.example

javax.activation

org.example

java.base

javax.activation

java.activation

(…) java.net.http

java.httpclient

Require-PlatformModule:
java.httpclient; version=1.9

Bundle A Bundle B

OSGi Bundles

JPMS Modules

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Proof of Concept

• Iterate modules in current platform.

• Provide a capability for each module from the Framework.

• Export packages into OSGi for each module-exported package.

• Launch OSGi bundles in the “unnamed” JPMS module.

• Simulate Require-PlatformModule with a capability:
•Require-Capability: jmodule;
filter:=“(jmodule=java.httpclient)”

•Works! github.com/njbartlett/osgi_jigsaw

http://github.com/njbartlett/osgi_jigsaw

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

DEMO

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Next Steps

• Use jdeps to calculate minimal platform dependencies for a set of
bundles.

• Use jlink to create a complete runtime: JVM, JPMS modules, OSGi
bundles.

• Integrate these tools into bnd and Bndtools.

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Can We Do Even Better?

• That was unidirectional dependence.

• All OSGi bundles in a single JPMS module.

• OSGi can’t use JPMS encapsulation (assuming we want to?).

• Can we map bundles directly to modules? One-to-one?

• Maybe… but it’s complicated.

• JPMS not dynamic, no overlapping private packages, no cycles.

• Would require multiple module Layers, not strictly hierarchical, with Layer
creator controlling module wiring.

• Requires changes in JPMS/Jigsaw that may or may not happen.

• Tom Watson (Equinox project lead) has done great work here.

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

JSR Membership

• I am now a member of the JSR 376 Expert Group.

• I want to represent the OSGi community…

• (within the constraints set by the Spec Lead).

• Talk to me if there’s something you think I should
raise on the EG.

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Conclusion

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

JPMS Biggest Problem

• “Adding” modularity to a 20-year-old product is hard.

• Best way to modularise? Refactor!

• Not an option for the JRE.

• JPMS did what was necessary to modularise the JRE without refactoring.

• OSGi couldn’t have done this job.

• (It was tried – Apache Harmony came close)

• The choices made by JPMS have unfortunate consequences.

• Why suffer those consequences outside the JRE?

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Takeway Message:

JPMS for the JDK.

OSGi for Everything Else.

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Afterword

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

What does JPMS remind me of…?

BREXIT

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

JPMS ~= BREXIT

• I didn’t vote for it!

• Nobody knows what it will look like.

• Huge distraction from actual important stuff.

• Can’t be stopped now …or can it? ;-)

• Try to make the best of it?

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

 www.paremus.com @Paremus info@paremus.com

