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Introduction
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Java has a Problem…
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Java’s Getting Larger
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Who Really Cares?

• Not Enterprise.

• Disk and memory are cheap.

• Competition is mostly .Net.
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IoT Cares… 

• Limited memory, CPU.

• Little or no storage!

• Economies of scale… 100,000s of 
devices * $5 saving per device?

• Java’s competition is no longer 
(just) .Net.

• Includes NodeJS, Go, Rust… 
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Java Modularity

• OSGi: Started in late 1990’s with JSR 8.

• OSGi Alliance formed and Release 1 published in 2000.

• Now on Release 6, working towards Release 7.

• … but we never could modularise the JDK!

• Reasons include political, commercial and technical concerns.

• Let’s just focus on the technical.
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JDK Modularity

• Sun (later Oracle) led several aborted projects in mid 2000s.

• JSR 294 “Superpackages” – dead

• JSR 277 “Java Module System” – dead

• JSR 376 “Java Platform Module System” (JPMS).

• Jigsaw prototype — targeting Java 7 in 2011.

• Slipped to Java 8.

• Slipped again to Java 9.

• Java 9 delayed by a year (so far).

• Clearly not a trivial problem!
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JPMS and OSGi

• JPMS’s primary goal is to modularise the JDK.

• It can also be used by libraries and applications.

• So how does this affect OSGi and its users?
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Basics
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What’s a Module?

“A unit of encapsulation that communicates with 
other modules through agreed contracts.”
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What’s a Module?

“A unit of encapsulation that communicates with 
other modules through agreed contracts.”
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What’s NOT a Module?

• Monolithic Java applications (classpath).

• No encapsulation – everything can interact with anything.

• Communication is ad hoc.

• Contracts may be used.
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Encapsulation / Isolation
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Isolation

• Isolation is a continuum.

• Principle – Freedom from 
Interference

• Isolation has a cost!

Monolithic
Method

Classes

OSGi

Isolation

Cost

Process

VM Physical
Server

Regional
Datacentre

Datacentre on
Mars

Container
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Isolation

• OSGi and JPMS provide code-level isolation.

• Neither prevents modules from:

• Consuming all available memory;

• Creating 1000s of threads;

• Calling System.exit()!

• Both do prevent:

• Accessing “internal” types from outside a module.
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OSGi Isolation: Visibility

• OSGi creates a ClassLoader per bundle

• Each bundle has a Class Space: the set of classes visible to it.

• Equal to the private contents of the bundle + explicitly imported types.

• Bundle 1 cannot see Bundle 2’s private types.

• As if they don’t exist.

private types

Bundle 1 Bundle 2
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JPMS Isolation: Access

• Modules on the module path live in a single ClassLoader

• Modules can see but not access another module’s private types.

• Class.forName() … works!

• clazz.newInstance() … fails with IllegalAccessException.

• ICYWW, setAccessible(true) also fails.

private types

Module 1 Module 2
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Implications for OSGi

• In OSGi this works:

• Why would you do this?

• Static linking is a useful technique;

• Avoid external dependency;

• Avoid versioning issues.

com.google.common.base

…

com.google.common.base

…

private packageLegend:
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Implications for OSGi

• In OSGi this also works:

• Does add some complexity, but manageable.

• Sometimes our dependencies cannot be reduced to a single version of 
every API.

org.example.api 1.0 org.example.api 1.5

Legend: exported package
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Implications for OSGi

• Even this works

• B1 sees packages a, b and c(1.0).

• B2 sees packages b and c (2.0).

• B3 sees package c (2.0).

• Package c in B1 and B3 can be entirely different.

b

c

b

c 2.0

a

c (1.0)

Bundle 1 Bundle 2 Bundle 3

Legend: imported package
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Implications for OSGi

• In OSGi this doesn’t work:

org.example.api 1.0

org.example.api 1.5

Class.forName(
org.example.api.Foo)
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Implications for OSGi

• Why not?

• Type name is not unique.

• If we specify a bundle we are fine!

• Why is this a problem?

• Many libraries assume it “just works”.

• OSGi ClassLoader is forced to guess. Sometimes it guesses wrong.

• Probably the biggest source of frustration for new OSGi users!

• But what are we to do??
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Implications for JPMS

• In JPMS this doesn’t work:

•java.lang.reflect.LayerInstantiationException: Package 
com.google.common.base in both module a and module b. 

• Unless we manage our own ClassLoaders.

• … like OSGi does!

com.google.common.base

…

com.google.common.base

…
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Implications for JPMS

• And this doesn’t work:

• Unless we manage our own ClassLoaders…

org.example.api 1.5org.example.api 1.0
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Contracts & Dependencies
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Contracts & Dependencies

• Any fool can build a wall.

• Working together is harder.

• How do we reintroduce connections in a controlled  way?



Copyright © 2005 - 2016 Paremus Ltd. 
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Exports

• Both JPMS and OSGi share Java packages.

• In both cases, any non-exported packages are “private”.

# OSGi 
Export-Package: org.example.api

// JPMS 
module A { 
   exports org.example.api; 
}
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Imports

• In OSGi the complement of exporting packages is importing packages.

• This creates a “wire” across which class loading requests can be delegated.

Import-Package: org.example.api

org.foo org.foo

A B
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Requires

• OSGi also supports Require-Bundle. Imports all exported packages of a bundle.

• Require-Bundle is deprecated. Eclipse developers: this includes you!

Require-Bundle: B

org.foo org.foo

A B
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Refactoring with Import-Package

org.fooorg.foo

A B

org.bar org.bar

org.foo

A
B

org.foo

org.bar

A'

org.bar

import

import

import

Before

After
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Refactoring with Require-Bundle

org.foo

A B

org.bar

org.foo

A B

A'

org.bar

require

require

Before

After
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Requires

• JPMS only supports requires – equivalent to Require-Bundle

• Same problems!

• “requires” public means re-export

module B { 
   requires org.example.api; 
   requires public org.example.foo.api; 
}
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Versioning
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Versioning

• OSGi supports versioning: of bundles and packages.

• Export packages with a version e.g. 1.0.1

• Import packages with a version e.g. [1, 2)

• Tooling detects how we use the package and generates the correct range.

org.foo [1,2) org.foo 1.0

org.foo 2.0
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Versioning

• JPMS does not support versions in module-info.java.

• A version can be supplied at build-time with a command-line param.

• … but it’s not used anywhere.

• Multiple versions of a module are not supported.

• Version selection by the module system is out of scope.

• Somebody (Maven?) has to create a set of modules that will work.

• That set must contain at most one version of each module.

• Maven isn’t very good at this!
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Dynamics
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Dynamics

• OSGi bundles can be dynamically installed, updated, uninstalled.

• “But I’m an enterprise developer, I never want to do this”.

• Fair point! Nobody’s forcing you.

• OSGi originally designed for home gateways, similar to modern IoT.

• Installing and updating minimal set of dependencies is invaluable.

• Especially over low-speed, intermittent networks.
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Dynamics

• So… dynamics are just for IoT?

• No! OSGi Services represent the change state of the world:

• Remote Service availability (microservices!)

• Network status

• Market opening hours

• …

• OSGi encourages a robust programming model that adapts to the real world
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JPMS Dynamics



Copyright © 2005 - 2016 Paremus Ltd. 
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

Reflection
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Reflection

• This is the big one!

• First, OSGi:

A

B

Bundle bundleA = // blah

Class c = bundleA.loadClass(

   “org.example.internal.FooImpl”);

FooImpl f = c.newInstance();

f.doSomething(); // OK! org.example.internal

org.example.internal
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Reflection

• Note:

• No import of org.example.internal.

• org.example.internal isn’t exported.

• This is always possible if we know the origin bundle and type.

• Use case: Declarative Services
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Declarative Services in a Nutshell

<component>
   <implementation class=
      “org.example.internal.Foo”/>
</component>

@Component
public class Foo { }

bnd build

Foo

SCR
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Declarative Services

• Doesn’t this break encapsulation? We can access any type!

• Debatable… but practically speaking, no.

• Origin bundle declares the type explicitly, otherwise it’s unknown.

• Reflection could be used to do bad things… 

• … but you can’t claim you didn’t know what you were doing.
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Other Use-Cases

• Dependency Injection frameworks (all of them).

• Object/Relational Mapping … Hibernate, JPA, etc.

• Serialization… JAXB, Protocol Buffers, etc.

• Eclipse Extension Registry (plugin.xml)

• In other words: most of our critical infrastructure!



Copyright © 2005 - 2016 Paremus Ltd. 
May not be reproduced by any means without express permission. All rights reserved.

OSGi Community Event Nov 2016

The JPMS Approach

• JPMS automatically adds a “read edge” when we reflect on a module.

• But the private packages remain inaccessible, period.

• Probably the biggest area of contention in JSR 376.

• See http://bit.ly/jpms-reflect *

* http://openjdk.java.net/projects/jigsaw/spec/issues/#ReflectiveAccessToNonExportedTypes

http://bit.ly/jpms-reflect
http://openjdk.java.net/projects/jigsaw/spec/issues/#ReflectiveAccessToNonExportedTypes
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Non-Solution: Services

• ServiceLoader has privileged access to named types inside module 
private packages.

• No help. Services in J2SE are very, very limited.

• No lifecycle control, no dependency injection…

• DI module has to declare “uses” for each interface type.

* http://openjdk.java.net/projects/jigsaw/spec/issues/#ReflectiveAccessToNonExportedTypes

module A { 
provides org.example.api.Foo 
   with org.example.internal.FooImpl; 

}

http://openjdk.java.net/projects/jigsaw/spec/issues/#ReflectiveAccessToNonExportedTypes
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Possible Solution: Export and be Damned!

• We could just export all the packages!

• Inadvisable… now all internal packages are public API.

• Encapsulation is gone, both at build and run time.

module A { 
exports org.example.internal; 
// I hope nobody depends on this! 

}
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Possible Solution: Qualified Export

• Exports can be qualified: only accessible to specific, named modules.

• Problem: we need to know all the possible requirers in advance!

• Doesn’t work for specifications with multiple implementations, like JPA.

module A { 
exports org.example.internal to 
       org.hibernate; 
       // Bad luck EclipseLink! 

}
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Possible Solution: Dynamic Export

• Proposed and implemented by Oracle … then killed just last month.

• Idea: exports that are effective at runtime but not build time.

• Have to explicitly list every package to be treated this way.

• Weakens “fidelity across all phases” but this is closest to OSGi.

module A { 
exports dynamic org.example.internal; 
exports dynamic org.example.impl.a; 
exports dynamic org.example.impl.b; 
// Hope I got them all! 

}
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Possible Solution: Weak Modules

• Oracle’s current proposal (killed last week!)

• Idea: weak modules have no private packages, everything is exported.

• Envisioned as a transitional step to “strong” modules.

• Question: if we use DI, ORM, serialization etc, can we ever get rid of 
“weak” modules??

weak module A { 
// The jokes write themselves… 

}
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Possible Solution: Open Modules

• Oracle’s even more current proposal (since Thursday, around tea-time).

• Like “dynamic” exports, i.e. open for reflection but not at compile-time.

• In an open module, all packages are open.

• Normal modules can open specific packages.

open module A { 
// Can still explicitly export… 
exports org.example.api; 

} 
module B { 
  opens org.example.impl; 
}
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Possible Solution: Privileged Modules

• Community proposal from Nikita Lipsky.

• Idea: bless certain modules as “privileged”. They, and only they, can 
access private packages of any module.

• Perhaps a command line switch to permit privileged modules?

• Attraction: only a small number of modules ever need this.

• Why should only ServiceLoader be allowed to do this?
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Interoperability, 

OR, 

Can Dogs and Cats Live Together??
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YES
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Basic Interop

• Java 9 is backwards compatible, if you use only standard Java SE APIs.

• OSGi uses only standard Java SE APIs.

• Therefore OSGi runs unchanged on Java 9!

• Give or take the usual bugs, it’s only Early Access:
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Compatibility Issues

• Java 9 may not be backwards compatible for code that uses non-
standard APIs.

• E.g.: sun.misc.Unsafe

• Same advice for OSGi developers as all other Java developers.

• As an OSGi dev you have a much better idea of your dependencies 
already!
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Can We Do Better?

• YES!

• Background: “platform” dependencies are handled 2 ways in OSGi:

• 1. The Execution Environment: a capability published by the Framework.

• Example: Require-Capability: osgi.ee; 
filter:=“(&(osgi.ee=JavaSE)(version=1.8))" 

• Generated by tooling (fortunately!)

• Bundle now only resolves on Java 8, can access APIs e.g. 
java.util.function.

• 2. Import-Package for everything outside java.*.
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Can We Do Better?

• Import-Package still works great.

• The execution environment concept is probably obsolete.

• Can no longer talk about monolithic platform with a single version.

• Need to depend on platform modules… i.e. JPMS.

• Proposal: Require-PlatformModule

• Example: Require-PlatformModule: java.httpclient; 
version=1.9

• Bundle should no longer resolve on a platform that lacks the 
java.httpclient module.
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Can We Do Better?

org.example

javax.activation

org.example

java.base

javax.activation

java.activation

(…) java.net.http

java.httpclient

Require-PlatformModule:
java.httpclient; version=1.9

Bundle A Bundle B

OSGi Bundles

JPMS Modules
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Proof  of  Concept

• Iterate modules in current platform.

• Provide a capability for each module from the Framework.

• Export packages into OSGi for each module-exported package.

• Launch OSGi bundles in the “unnamed” JPMS module.

• Simulate Require-PlatformModule with a capability:
•Require-Capability: jmodule; 
filter:=“(jmodule=java.httpclient)” 

•Works! github.com/njbartlett/osgi_jigsaw

http://github.com/njbartlett/osgi_jigsaw
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DEMO
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Next Steps

• Use jdeps to calculate minimal platform dependencies for a set of 
bundles.

• Use jlink to create a complete runtime: JVM, JPMS modules, OSGi 
bundles.

• Integrate these tools into bnd and Bndtools.
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Can We Do Even Better?

• That was unidirectional dependence.

• All OSGi bundles in a single JPMS module.

• OSGi can’t use JPMS encapsulation (assuming we want to?).

• Can we map bundles directly to modules? One-to-one?

• Maybe… but it’s complicated.

• JPMS not dynamic, no overlapping private packages, no cycles.

• Would require multiple module Layers, not strictly hierarchical, with Layer 
creator controlling module wiring.

• Requires changes in JPMS/Jigsaw that may or may not happen.

• Tom Watson (Equinox project lead) has done great work here.
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JSR Membership

• I am now a member of the JSR 376 Expert Group.

• I want to represent the OSGi community…

• (within the constraints set by the Spec Lead).

• Talk to me if there’s something you think I should 
raise on the EG.
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Conclusion
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JPMS Biggest Problem

• “Adding” modularity to a 20-year-old product is hard.

• Best way to modularise? Refactor!

• Not an option for the JRE.

• JPMS did what was necessary to modularise the JRE without refactoring.

• OSGi couldn’t have done this job.

• (It was tried – Apache Harmony came close)

• The choices made by JPMS have unfortunate consequences.

• Why suffer those consequences outside the JRE?
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Takeway Message:

JPMS for the JDK. 

OSGi for Everything Else.
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Afterword
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What does JPMS remind me of…?



BREXIT
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JPMS ~= BREXIT

• I didn’t vote for it!

• Nobody knows what it will look like.

• Huge distraction from actual important stuff.

• Can’t be stopped now …or can it?  ;-)

• Try to make the best of it?
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