s Paremus

OSGi, Java 9 and the Future of
Modularity

Neil Bartlett http://www.paremus.com

info@paremus.com

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

http://www.paremus.com
mailto:info@paremus.com

Introduction

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

t%%- Java has a Problem..

afh X

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

s Java’s Getting Larger

M Solaris M Linux L Mac OSX

300

225 -
o
=3
(0]
N
P 150
3
C
2
o
a

75

,m -
1.1.8 1.2.2 1.3.1 1.4.2 5 6 7 8
JDK Release
OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016

May not be reproduced by any means without express permission. All rights reserved.

%7 Who Really Cares?

o

e Not Enterprise.
e Disk and memory are cheap.
e Competition is mostly .Net.

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

7. |0T Cares...

¢ |imited memory, CPU.
e | ittle or no storage!

e Economies of scale... 100,000s of
devices * $5 saving per device?

e Java’s competition is no longer
(just) .Net.

e |ncludes NodedS, Go, Rust...

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

7= Java Modularity

o

e OSGi: Started in late 1990’s with JSR 8.

e OSGi Alliance formed and Release 1 published in 2000.
e Now on Release 6, working towards Release 7.

e ... but we never could modularise the JDK!

e Reasons include political, commercial and technical concerns.
e | et’s just focus on the technical.

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

£+ JDK Modularity

e Sun (later Oracle) led several aborted projects in mid 2000s.
e JSR 294 “Superpackages” — dead

JSR 277 “Java Module System” — dead

e JSR 376 “Java Platform Module System” (JPMS).

e Jigsaw prototype — targeting Java 7 in 2011.

e Slipped to Java 8.

e Slipped again to Java 9.
e Java 9 delayed by a year (so far).
e Clearly not a trivial problem!

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

s JPMS and OSGi

e JPMS’s primary goal is to modularise the JDK.
¢ |t can also be used by libraries and applications.
e S0 how does this affect OSGi and its users?

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

Basics

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

%7 What’s a Module?

“A unit of encapsulation that communicates with
other modules through agreed contracts.”

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7 What’s a Module?

“A unit of encapsulation that communicates with
other modules through agreed contracts.”

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7 What’s NOT a Module?

e Monolithic Java applications (classpath).
e No encapsulation — everything can interact with anything.
e Communication is ad hoc.
e Contracts may be used.

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

Encapsulation / Isolation

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

47 |solation

. Cost
A Datacentre on
]] i Mars
¢ |solation is a continuum.
¢ Principle — Freedom from
Interference Datasonire
¢ |solation has a cost! ™ Physical
Container
Process
Classes
Monolithic
Method
-
Isolation

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016

May not be reproduced by any means without express permission. All rights reserved.

%7 Isolation

o

e OSGi and JPMS provide code-level isolation.
¢ Neither prevents modules from:
¢ Consuming all available memory;

e Creating 1000s of threads;
e Calling System.exit()!
e Both do prevent:
e Accessing “internal” types from outside a module.

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7 OSGi Isolation: Visibility

o

e OSGi creates a ClassLoader per bundle
e Each bundle has a Class Space: the set of classes visible to it.
e Fqual to the private contents of the bundle + explicitly imported types.

Bundle 1 Bundle 2

4 ("
X private types

e Bundle 1 cannot see Bundle 2’s private types.

e As if they don’t exist.

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7e» JPMS Isolation: Access

e Modules on the module path live in a single ClassLoader
e Modules can see but not access another module’s private types.

Module 1 Module 2

e Class.forName() ... works!
e clazz.newInstance() ... fails with lllegalAccessException.
o ICYWW, setAccessible(true) also fails.

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7 Implications for OSGi

o

¢ |n OSGi this works:

~

com.google.common.base

com.google.common.base

e \Why would you do this?

e Static linking is a useful technique;

e Avoid external dependency;

e Avoid versioning issues.

Legend: ‘ private package I

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

%7» Implications for OSGi

e |n OSGi this also works:

org.example.api 1.0

-~

-~

e Does add some complexity, but manageable.

org.example.api 1.5

e Sometimes our dependencies cannot be reduced to a single version of

every API.

Logend

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

2o IMmplications for OSGi
e Even this works
Bundle 1 Bundle 2 Bundle 3

g 4
b

C c 2.0

e B1 sees packages a,band c(1.0).
e B2 sees packagesbandc (2.0).
e B3 sees package c (2.0).

e Package c in B1 and B3 can be entirely different. Legend: | impored package |

May not be reproduced by any means without express permission. All rights reserved.

%7 Implications for OSGi

o

e |[n OSGi this doesn’t work:

-

org.example.api 1.0

Class.forName(

org.example.api.Foo)

-

org.example.api 1.5

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7 Implications for OSGi

o
e \Why not?

e Type name is not unique.
¢ |f we specify a bundle we are fine!

e Why is this a problem?
e Many libraries assume it “just works”.
o OSGi ClasslLoader is forced to guess. Sometimes it guesses wrong.

e Probably the biggest source of frustration for new OSGi users!
e But what are we to do??

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7 Implications for JPMS

e |[n JPMS this doesn’t work:

com.google.common.base com.google.common.base

® java.lang.reflect.LayerInstantiationException: Package
com.google.common.base 1n both module a and module b.

¢ Unless we manage our own ClassLoaders.
o ... like OSGi does!

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7e- Implications for JPMS

e And this doesn’t work:

org.example.api 1.0 org.example.api 1.5

¢ Unless we manage our own ClassLoaders...

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

Contracts & Dependencies

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

%7e» Contracts & Dependencies

e Any fool can build a wall.
e Working together is harder.
e How do we reintroduce connections in a controlled way?

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7 Exports

o

e Both JPMS and OSGi share Java packages.
¢ |n both cases, any non-exported packages are “private”.

0SG1
Export-Package: org.example.apil

// JPMS
module A {
exports org.example.api;

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7 Imports

o

e |n OSGi the complement of exporting packages is importing packages.
e This creates a “wire” across which class loading requests can be delegated.

Import-Package: org.example.apil

org.foo

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7 Requires

o

e OSGi also supports Require-Bundle. Imports all exported packages of a bundle.
e Require-Bundle is deprecated. Eclipse developers: this includes you!

Require-Bundle: B

org.foo

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7» Refactoring with Import-Package

Before

import

After

import

import

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7e- Refactoring with Require-Bundle

Before
B
f
require
After
B
(
require
OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016

May not be reproduced by any means without express permission. All rights reserved.

%7 Requires

o

e JPMS only supports requires — equivalent to Require-Bundle
e Same problems!
e “requires” public means re-export

module B {
requlires org.example.api;
requlres public org.example.foo.api;

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

Versioning

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

o

%7 Versioning

OSGi supports versioning: of bundles and packages.

Export packages with a version e.g. 1.0.1

Import packages with a version e.g. [1, 2)

Tooling detects how we use the package and generates the correct range.

-

org.foo [1,2)

e

org.foo 1.0

-

yae Org.foo 2.0

OSGi Community Event

May not be reproduced by any means without express permission. All rights reserved.

Copyright © 2005 - 2016 Paremus Ltd.

Nov 2016

o

%7» Versioning

e JPMS does not support versions in module-info.java.
e A version can be supplied at build-time with a command-line param.
e ... butit’s not used anywhere.

e Multiple versions of a module are not supported.

e \ersion selection by the module system is out of scope.

e Somebody (Maven?) has to create a set of modules that will work.
e That set must contain at most one version of each module.
e Maven isn’t very good at this!

Dynamics

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

%7%» Dynamics

o

e OSGi bundles can be dynamically installed, updated, uninstalled.
e “But I’'m an enterprise developer, | never want to do this”.
e Fair point! Nobody’s forcing you.

e OSGi originally designed for home gateways, similar to modern loT.
¢ |nstalling and updating minimal set of dependencies is invaluable.
e Especially over low-speed, intermittent networks.

%7 Dynamics

o
® 50... dynamics are just for loT?
e No! OSGi Services represent the change state of the world:
e Remote Service availability (microservices!)

e Network status
e Market opening hours

e OSGi encourages a robust programming model that adapts to the real world

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7 JPMS Dynamics

o

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

Reflection

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

4»' 0

%7s Reflection

e This is the big one!
o First, OSGi:

Bundle bundleA = // blah
Class ¢ = bundleA.loadClass(

A

“org.example.internal.FooImpl”);

FooImpl f = c.newInstance();

f.doSomething(); // OK!

org.example.internal

B

org.example.internal

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved

Nov 2016

247 Reflection

e Note:
e No import of org.example.internal.
e org.example.internal isn’t exported.

e This is always possible if we know the origin bundle and type.
e Use case: Declarative Services

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

34> Declarative Services in a Nutshell

@Component
public class Foo { }

bnd build

<component>
<implementation class=
“org.example.internal.Foo” />
</component>

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7e» Declarative Services

o

e Doesn’t this break encapsulation”? We can access any type!
e Debatable... but practically speaking, no.
e Origin bundle declares the type explicitly, otherwise it’s unknown.

¢ Reflection could be used to do bad things...
e ... but you can’t claim you didn’t know what you were doing.

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7%» Other Use-Cases

o

e Dependency Injection frameworks (all of them).

e Object/Relational Mapping ... Hibernate, JPA, etc.
e Serialization... JAXB, Protocol Buffers, etc.

e Eclipse Extension Registry (plugin.xml)

e |n other words: most of our critical infrastructure!

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7%» The JPMS Approach

o

e JPMS automatically adds a “read edge” when we reflect on a module.
e But the private packages remain inaccessible, period.

e Probably the biggest area of contention in JSR 376.

e See http://bit.ly/jpms-reflect *

* http://openjdk.java.net/projects/jigsaw/spec/issues/#ReflectiveAccessToNonExportedTypes

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

http://bit.ly/jpms-reflect
http://openjdk.java.net/projects/jigsaw/spec/issues/#ReflectiveAccessToNonExportedTypes

%7e» Non-Solution: Services

o

e ServiceLoader has privileged access to named types inside module
private packages.

e No help. Services in J2SE are very, very limited.

* No lifecycle control, no dependency injection...
e DI module has to declare “uses” for each interface type.

module A {
provides org.example.api.Foo
with org.example.internal.Foolmpl;

* http://openjdk.java.net/projects/jigsaw/spec/issues/#ReflectiveAccessToNonExportedTypes

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

http://openjdk.java.net/projects/jigsaw/spec/issues/#ReflectiveAccessToNonExportedTypes

%2 Possible Solution: Export and be Damned!

e \We could just export all the packages!
e |nadvisable... now all internal packages are public API.
e Encapsulation is gone, both at build and run time.

module A {
exports org.example.internal;
// I hope nobody depends on this!

¥

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7» Possible Solution: Qualified Export

o

e Exports can be qualified: only accessible to specific, named modules.
e Problem: we need to know all the possible requirers in advance!
e Doesn’t work for specifications with multiple implementations, like JPA.

module A {
exports org.example.internal to
org.hibernate;
// Bad luck EclipseLink!

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7e» Possible Solution: Dynamic Export

o

e Proposed and implemented by Oracle ... then killed just last month.
¢ |dea: exports that are effective at runtime but not build time.

e Have to explicitly list every package to be treated this way.

o \Weakens “fidelity across all phases” but this is closest to OSGi.

module A {
exports dynamic org.example.internal;
exports dynamic org.example.impl.a;
exports dynamic org.example.impl.b;
// Hope I got them all!

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7e» Possible Solution: Weak Modules

e Oracle’s eurrent proposal (killed last week!)
¢ |dea: weak modules have no private packages, everything is exported.
e Envisioned as a transitional step to “strong” modules.

e Question: if we use DI, ORM, serialization etc, can we ever get rid of
*weak” modules??

weak module A {
// The jokes write themselves..

¥

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7» Possible Solution: Open Modules

o

e Oracle’s even more current proposal (since Thursday, around tea-time).
o |ike “dynamic” exports, i.e. open for reflection but not at compile-time.
e |[n an open module, all packages are open.

e Normal modules can open specific packages.

open module A {
// Can still explicitly export..
exports org.example.api;

}

module B {
opens org.example.impl;

}

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7» Possible Solution: Privileged Modules

o

e Community proposal from Nikita Lipsky.

¢ |dea: bless certain modules as “privileged”. They, and only they, can
access private packages of any module.

e Perhaps a command line switch to permit privileged modules?
e Attraction: only a small number of modules ever need this.
e \WWhy should only ServiceLoader be allowed to do this?

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

Interoperability,
OR,

Can Dogs and Cats Live Together??

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

%7 Basic Interop

e Java 9 is backwards compatible, if you use only standard Java SE APIs.
e OSGi uses only standard Java SE APls.

e Therefore OSGi runs unchanged on Java 9!

e (Give or take the usual bugs, it’s only Early Access:

Eclipse
An error has occurred.

See the log file
% [Users/nbartlett/Workspaces/Java9/.metadata/.log.

—T—

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7 Compatibility Issues

o

e Java 9 may not be backwards compatible for code that uses non-
standard APls.

e E.g..sun.misc.Unsafe

e Same advice for OSGi developers as all other Java developers.

e As an OSGi dev you have a much better idea of your dependencies
already!

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7%e» Can We Do Better?

o

e YES!
e Background: “platform” dependencies are handled 2 ways in OSGi:
e 1. The Execution Environment. a capability published by the Framework.

e Example: Require-Capability: osgi.ee;
filter:=(&(osgli.ee=JavaSE)(version=1.8))"

e (Generated by tooling (fortunately!)

¢ Bundle now only resolves on Java 8, can access APIs e.q.
java.util.function.

e 2. Import-Package for everything outside java. *.

o

%7%e» Can We Do Better?

Import-Package still works great.

The execution environment concept is probably obsolete.

Can no longer talk about monolithic platform with a single version.
Need to depend on platform modules... i.e. JPMS.

Proposal: Require-PlatformModule

Example: Require-PlatformModule: java.httpclient;
version=1.9

Bundle should no longer resolve on a platform that lacks the
java.httpclient module.

%7e» Can We Do Better?

Bundle A Bundle B

org.example org.example Require-PlatformModule:
java.httpclient; version=1.9

javax.activation

javax.activation . java.net.http

java.activation java.base java.httpclient

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

o

%7» Proof of Concept

lterate modules in current platform.
Provide a capability for each module from the Framework.

Export packages into OSGi for each module-exported package.
Launch OSGi bundles in the “unnamed” JPMS module.

Simulate Require-PlatformModule with a capability:

® Require-Capability: Jmodule;
filter:=“(Jmodule=java.httpclient)”

® Works! github.com/njbartlett/osgi_jigsaw

http://github.com/njbartlett/osgi_jigsaw

DEMO

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

%7 Next Steps

o

e Use jdeps to calculate minimal platform dependencies for a set of
bundles.

e Use jlink to create a complete runtime: JVM, JPMS modules, OSGi
bundles.

¢ |ntegrate these tools into bnd and Bndtools.

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

%7e» Can We Do Even Better?

o

e That was unidirectional dependence.
e All OSGi bundles in a single JPMS module.
e OSGi can’t use JPMS encapsulation (assuming we want to?).

e Can we map bundles directly to modules? One-to-one?
e Maybe... but it's complicated.
¢ JPMS not dynamic, no overlapping private packages, no cycles.

¢ \Would require multiple module Layers, not strictly hierarchical, with Layer
creator controlling module wiring.

¢ Requires changes in JPMS/Jigsaw that may or may not happen.
e Tom Watson (Equinox project lead) has done great work here.

%> JSR Membership

e | am now a member of the JSR 376 Expert Group.

¢ | want to represent the OSGi community...
e (within the constraints set by the Spec Lead).

e Talk to me if there’s something you think | should GOOD..GOOD
raise on the EG. '

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

Conclusion

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

%7 JPMS Biggest Problem

o

e “Adding” modularity to a 20-year-old product is hard.
e Best way to modularise? Refactor!
e Not an option for the JRE.

¢ JPMS did what was necessary to modularise the JRE without refactoring.
e OSGi couldn’t have done this job.
¢ (|t was tried — Apache Harmony came close)

¢ The choices made by JPMS have unfortunate consequences.
o \Why suffer those consequences outside the JRE?

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

o
o %o ®

s7=> 1akeway Message:

JPMS for the JDK.

OSGi for Everything Else.

osGi Community EVEeORE - Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Afterword

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

What does JPMS remind me of...?

OSGi Community Event

Copyright © 2005 - 2016 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Nov 2016

2. JPMS ~= BREXIT

e | didn’t vote for it!

e Nobody knows what it will look like.

e Huge distraction from actual important stuff.
e Can’t be stopped now ...orcan it? ;-)

e Try to make the best of it?

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

Paremus

www.paremus.com YW @Paremus @ info@paremus.com

OSGi Community Event Copyright © 2005 - 2016 Paremus Ltd. Nov 2016
May not be reproduced by any means without express permission. All rights reserved.

