
Building a
recommendation engine
with Neo4j and Clojure

Mark Needham @markhneedham

Introducing our data set...

meetup.com’s recommendations

Making recommendations

‣ Several different types
• groups to join
• topics to follow
• events to attend

‣ As a user of meetup.com trying to find
groups to join and events to attend

Making recommendations

‣ Content based filtering
Recommend items based on what users have liked in
the past

‣ Collaborative filtering
Predict what users like based on the similarity of their
behaviors, activities and preferences to others

1. Collect item characteristics
2. Find similar items
3. Recommend similar items

e.g. similar movie genres

Content based filtering

Collaborative filtering

1. Collect user behaviour
2. Find similar users
3. Recommend behaviour taken by similar users

e.g. people with similar musical tastes

Find similar groups to Neo4j

As a member of the Neo4j London group

I want to find other similar meetup groups

So that I can join those groups

What makes groups similar?

As a member of the Neo4j London group

I want to find other similar meetup groups

So that I can join those groups

Find similar groups to Neo4j

As a member of the Neo4j London group

I want to find other similar meetup groups

So that I can join those groups

Nodes

As a member of the Neo4j London group

I want to find other similar meetup groups

So that I can join those groups

Relationships

As a member of the Neo4j London group

I want to find other similar meetup groups

So that I can join those groups

Labels

As a member of the Neo4j London group

I want to find other similar meetup groups

So that I can join those groups

Properties

Find similar groups to Neo4j

MATCH (group:Group)-[:HAS_TOPIC]->(t)<-[:HAS_TOPIC]-(otherGroup)
WHERE group.name = "Neo4j - London User Group"
RETURN otherGroup.name,
 COUNT(t) AS topicsInCommon,
 COLLECT(t.name) AS topics
ORDER BY topicsInCommon DESC, otherGroup.name
LIMIT 10

Match a pattern in the graph

MATCH (group:Group)-[:HAS_TOPIC]->(t)<-[:HAS_TOPIC]-(otherGroup)
WHERE group.name = "Neo4j - London User Group"
RETURN otherGroup.name,
 COUNT(t) AS topicsInCommon,
 COLLECT(t.name) AS topics
ORDER BY topicsInCommon DESC, otherGroup.name
LIMIT 10

Anchor pattern in the graph

MATCH (group:Group)-[:HAS_TOPIC]->(t)<-[:HAS_TOPIC]-(otherGroup)
WHERE group.name = "Neo4j - London User Group"
RETURN otherGroup.name,
 COUNT(t) AS topicsInCommon,
 COLLECT(t.name) AS topics
ORDER BY topicsInCommon DESC, otherGroup.name
LIMIT 10

If an index for Group.name
exists, Cypher will use it

How does Neo4j use indexes?

Indexes are only used to find the starting
points for queries.

Use index scans to look up rows in tables
and join them with rows from other tables

Use indexes to find the starting
points for a query.

Relational Graph

Inline the anchoring

MATCH (group:Group {name: "Neo4j - London User Group"})
 -[:HAS_TOPIC]->(t)<-[:HAS_TOPIC]-(otherGroup)
RETURN otherGroup.name,
 COUNT(t) AS topicsInCommon,
 COLLECT(t.name) AS topics
ORDER BY topicsInCommon DESC, otherGroup.name
LIMIT 10

Create projection of results

MATCH (group:Group {name: "Neo4j - London User Group"})
 -[:HAS_TOPIC]->(t)<-[:HAS_TOPIC]-(otherGroup)
RETURN otherGroup.name,
 COUNT(t) AS topicsInCommon,
 COLLECT(t.name) AS topics
ORDER BY topicsInCommon DESC, otherGroup.name
LIMIT 10

Find similar groups to Neo4j

[clojurewerkz/neocons "3.1.0"]

Neo4j <3 Clojure

(:require

 [clojurewerkz.neocons.rest :as nr])

(def conn

 (nr/connect

 "http://neo4j:password@localhost:7474/db/data/"))

Connect to Neo4j

(:require [clojurewerkz.neocons.rest.cypher :as cy]

 [clojure.walk :as walk]))

(def query

 "MATCH (group:Group)-[:HAS_TOPIC]->(:Topic {name: {topic}})

 RETURN group

 LIMIT 5")

(->> (cy/tquery conn query {:topic "<Insert topic here>"})

 walk/keywordize-keys

 (map #(-> % :group :data)))

Find meetups by topic

Find Clojure meetups

(->> (cy/tquery conn query {:topic "Clojure"})

 walk/keywordize-keys

 (map #(-> % :group :data)))

({:created 1384181724000, :rating 4, :name "London Functional

Programmers", :id "11057352", :urlname "London-Functionals"}

 {:created 1231235336000, :rating 4, :name "OpenSource & Agile

Community Events", :id "1350857", :urlname "skillsmatter"})

Find Neo4j meetups

(->> (cy/tquery conn query {:topic "Neo4j"})

 walk/keywordize-keys

 (map #(-> % :group :data)))

({:created 1306977843000, :rating 4, :name "Neo4j - London User

Group", :id "1954021", :urlname "graphdb-london"}

 {:created 1440455142000, :rating 0, :name "London Data

Visualization", :id "18864999", :urlname "London-Data-

Visualization"})

Building a Clojure web app

(defroutes home-routes
 (GET "/" [] (home-page)))

Wiring everything up

Define route

(defroutes home-routes
 (GET "/" [] (home-page)))

(defn home-page []
 (layout/render
 "home.html" { :suggested-groups (suggested-groups logged-in-user)
 :suggested-events (suggested-events queries/suggested-events)}))

Wiring everything up

Create HTML page and outline
which data it’s going to have

(defroutes home-routes
 (GET "/" [] (home-page)))

(defn home-page []
 (layout/render
 "home.html" { :suggested-groups (suggested-groups logged-in-user)
 :suggested-events (suggested-events queries/suggested-events)}))

(defn suggested-groups [name]
 (let [result (cypher/execute queries/suggested-groups {:name name})]
 (->> result
 (map #(assoc % :score (scoring/score-row %)))
 (sort-by :score >)
 (take 12))))

Wiring everything up

Execute Cypher query against Neo4j
and do post processing of the result

(defroutes home-routes
 (GET "/" [] (home-page)))

(defn home-page []
 (layout/render
 "home.html" { :suggested-groups (suggested-groups logged-in-user)
 :suggested-events (suggested-events queries/suggested-events)}))

(defn suggested-groups [name]
 (let [result (cypher/execute queries/suggested-groups {:name name})]
 (->> result
 (map #(assoc % :score (scoring/score-row %)))
 (sort-by :score >)
 (take 12))))

Wiring everything up

Suggested groups

Anatomy of a recommendation

MATCH (member:Member {name: {name}})-[:INTERESTED_IN]->()<-[:HAS_TOPIC]-(otherGroup)
WHERE NOT (member)-[:MEMBER_OF]->(otherGroup)

WITH otherGroup,
 COUNT(*) AS topics,
 SIZE((otherGroup)<-[:MEMBER_OF]-()) AS numberOfMembers

OPTIONAL MATCH (otherGroup)-[:HOSTED_EVENT]->(event)
WHERE (timestamp() - 90*24*60*60*1000) < event.time < timestamp()

RETURN otherGroup, topics , numberOfMembers, COUNT(event) AS recentEvents

Anatomy of a recommendation

MATCH (member:Member {name: {name}})-[:INTERESTED_IN]->()<-[:HAS_TOPIC]-(otherGroup)
WHERE NOT (member)-[:MEMBER_OF]->(otherGroup)

WITH otherGroup,
 COUNT(*) AS topics,
 SIZE((otherGroup)<-[:MEMBER_OF]-()) AS numberOfMembers

OPTIONAL MATCH (otherGroup)-[:HOSTED_EVENT]->(event)
WHERE (timestamp() - 90*24*60*60*1000) < event.time < timestamp()

RETURN otherGroup, topics , numberOfMembers, COUNT(event) AS recentEvents

Find groups that
share our interests

Anatomy of a recommendation

MATCH (member:Member {name: {name}})-[:INTERESTED_IN]->()<-[:HAS_TOPIC]-(otherGroup)
WHERE NOT (member)-[:MEMBER_OF]->(otherGroup)

WITH otherGroup,
 COUNT(*) AS topics,
 SIZE((otherGroup)<-[:MEMBER_OF]-()) AS numberOfMembers

OPTIONAL MATCH (otherGroup)-[:HOSTED_EVENT]->(event)
WHERE (timestamp() - 90*24*60*60*1000) < event.time < timestamp()

RETURN otherGroup, topics , numberOfMembers, COUNT(event) AS recentEvents

Filter out the ones
we’re already in

Anatomy of a recommendation

MATCH (member:Member {name: {name}})-[:INTERESTED_IN]->()<-[:HAS_TOPIC]-(otherGroup)
WHERE NOT (member)-[:MEMBER_OF]->(otherGroup)

WITH otherGroup,
 COUNT(*) AS topics,
 SIZE((otherGroup)<-[:MEMBER_OF]-()) AS numberOfMembers

OPTIONAL MATCH (otherGroup)-[:HOSTED_EVENT]->(event)
WHERE (timestamp() - 90*24*60*60*1000) < event.time < timestamp()

RETURN otherGroup, topics , numberOfMembers, COUNT(event) AS recentEvents

Collect some metrics to
evaluate group relevance

and popularity

Anatomy of a recommendation

MATCH (member:Member {name: {name}})-[:INTERESTED_IN]->()<-[:HAS_TOPIC]-(otherGroup)
WHERE NOT (member)-[:MEMBER_OF]->(otherGroup)

WITH otherGroup,
 COUNT(*) AS topics,
 SIZE((otherGroup)<-[:MEMBER_OF]-()) AS numberOfMembers

OPTIONAL MATCH (otherGroup)-[:HOSTED_EVENT]->(event)
WHERE (timestamp() - 90*24*60*60*1000) < event.time < timestamp()

RETURN otherGroup, topics , numberOfMembers, COUNT(event) AS recentEvents

Check if the
group is active

Scoring the recommendation

(defn log2 [n] (/ (Math/log n) (Math/log 2)))

(defn score [minimum maximum eighty raw]
 (if (< raw minimum)
 0
 (let [alpha (/ (log2 5) eighty)
 exp (Math/exp (* (- alpha) raw))]
 (* maximum (- 1 exp)))))

(defn score-item [{minimum :minimum maximum :maximum eighty :eighty n :n}]
 (score minimum maximum eighty n))

(defn score-row [row]
 (let [topics {:n (-> row :topics) :minimum 1 :maximum 100 :eighty 5}
 members {:n (-> row :numberOfMembers) :minimum 50 :maximum 100 :eighty 1000}
 events {:n (-> row :recentEvents) :minimum 1 :maximum 100 :eighty 3}]
 (reduce #(+ %1 (score-item %2)) 0 [topics members events])))

Scoring the recommendation

(defn log2 [n] (/ (Math/log n) (Math/log 2)))

(defn score [minimum maximum eighty raw]
 (if (< raw minimum)
 0
 (let [alpha (/ (log2 5) eighty)
 exp (Math/exp (* (- alpha) raw))]
 (* maximum (- 1 exp)))))

(defn score-item [{minimum :minimum maximum :maximum eighty :eighty n :n}]
 (score minimum maximum eighty n))

(defn score-row [row]
 (let [topics {:n (-> row :topics) :minimum 1 :maximum 100 :eighty 5}
 members {:n (-> row :numberOfMembers) :minimum 50 :maximum 100 :eighty 1000}
 events {:n (-> row :recentEvents) :minimum 1 :maximum 100 :eighty 3}]
 (reduce #(+ %1 (score-item %2)) 0 [topics members events])))

Take in raw scores for
number of topics, members

and recent events

Scoring the recommendation

(defn log2 [n] (/ (Math/log n) (Math/log 2)))

(defn score [minimum maximum eighty raw]
 (if (< raw minimum)
 0
 (let [alpha (/ (log2 5) eighty)
 exp (Math/exp (* (- alpha) raw))]
 (* maximum (- 1 exp)))))

(defn score-item [{minimum :minimum maximum :maximum eighty :eighty n :n}]
 (score minimum maximum eighty n))

(defn score-row [row]
 (let [topics {:n (-> row :topics) :minimum 1 :maximum 100 :eighty 5}
 members {:n (-> row :numberOfMembers) :minimum 50 :maximum 100 :eighty 1000}
 events {:n (-> row :recentEvents) :minimum 1 :maximum 100 :eighty 3}]
 (reduce #(+ %1 (score-item %2)) 0 [topics members events])))

Take in raw scores for
number of topics, members

and recent events

{ :topics 3
 :numberOfMembers 932
 :recentEvents 3 }

Scoring the recommendation

(defn log2 [n] (/ (Math/log n) (Math/log 2)))

(defn score [minimum maximum eighty raw]
 (if (< raw minimum)
 0
 (let [alpha (/ (log2 5) eighty)
 exp (Math/exp (* (- alpha) raw))]
 (* maximum (- 1 exp)))))

(defn score-item [{minimum :minimum maximum :maximum eighty :eighty n :n}]
 (score minimum maximum eighty n))

(defn score-row [row]
 (let [topics {:n (-> row :topics) :minimum 1 :maximum 100 :eighty 5}
 members {:n (-> row :numberOfMembers) :minimum 50 :maximum 100 :eighty 1000}
 events {:n (-> row :recentEvents) :minimum 1 :maximum 100 :eighty 3}]
 (reduce #(+ %1 (score-item %2)) 0 [topics members events])))

Apply a weighting
to each of those

properties

Scoring the recommendation

(defn log2 [n] (/ (Math/log n) (Math/log 2)))

(defn score [minimum maximum eighty raw]
 (if (< raw minimum)
 0
 (let [alpha (/ (log2 5) eighty)
 exp (Math/exp (* (- alpha) raw))]
 (* maximum (- 1 exp)))))

(defn score-item [{minimum :minimum maximum :maximum eighty :eighty n :n}]
 (score minimum maximum eighty n))

(defn score-row [row]
 (let [topics {:n (-> row :topics) :minimum 1 :maximum 100 :eighty 5}
 members {:n (-> row :numberOfMembers) :minimum 50 :maximum 100 :eighty 1000}
 events {:n (-> row :recentEvents) :minimum 1 :maximum 100 :eighty 3}]
 (reduce #(+ %1 (score-item %2)) 0 [topics members events])))

Apply an exponential (Pareto)
function to the curve so that high
scores don’t dominate too much.

Scoring the recommendation

(defn log2 [n] (/ (Math/log n) (Math/log 2)))

(defn score [minimum maximum eighty raw]
 (if (< raw minimum)
 0
 (let [alpha (/ (log2 5) eighty)
 exp (Math/exp (* (- alpha) raw))]
 (* maximum (- 1 exp)))))

(defn score-item [{minimum :minimum maximum :maximum eighty :eighty n :n}]
 (score minimum maximum eighty n))

(defn score-row [row]
 (let [topics {:n (-> row :topics) :minimum 1 :maximum 100 :eighty 5}
 members {:n (-> row :numberOfMembers) :minimum 50 :maximum 100 :eighty 1000}
 events {:n (-> row :recentEvents) :minimum 1 :maximum 100 :eighty 3}]
 (reduce #(+ %1 (score-item %2)) 0 [topics members events])))

What about events?

Modeling events

Who are my meetup friends?

There’s an implicit FRIENDS relationship
between people who attended the same events.
Let’s make it explicit.

M

E

M

RSVPD

RSVPD

FRIENDS

M

E

M

RSVPD

RSVPD

Who are my meetup friends?

MATCH (m:Member)

WITH m1 LIMIT {limit}
MATCH (m)-[:RSVPD {response: 'yes'}]->(e:Event)<-[:RSVPD {response: 'yes'}]-(m2:Member)

WITH m, m2, COLLECT(e) AS events, COUNT(*) AS times
WHERE times >= 5

WITH m, m2, times,
 [event IN events | SIZE((event)<-[:RSVPD {response: 'yes’}]-())] AS attendances

WITH m, m2, REDUCE(score = 0.0, a IN attendances | score + (1.0 / a)) AS score

MERGE (m)-[friendsRel:FRIENDS]-(m2)
SET friendsRel.score = row.score

Who are my meetup friends?

MATCH (m:Member)

WITH m1 LIMIT {limit}
MATCH (m)-[:RSVPD {response: 'yes'}]->(e:Event)<-[:RSVPD {response: 'yes'}]-(m2:Member)

WITH m, m2, COLLECT(e) AS events, COUNT(*) AS times
WHERE times >= 5

WITH m, m2, times,
 [event IN events | SIZE((event)<-[:RSVPD {response: 'yes’}]-())] AS attendances

WITH m, m2, REDUCE(score = 0.0, a IN attendances | score + (1.0 / a)) AS score

MERGE (m)-[friendsRel:FRIENDS]-(m2)
SET friendsRel.score = row.score

I can only be friends with someone
if I’ve attended 5 or more of the

same meetups as them

Who are my meetup friends?

MATCH (m:Member)

WITH m1 LIMIT {limit}
MATCH (m)-[:RSVPD {response: 'yes'}]->(e:Event)<-[:RSVPD {response: 'yes'}]-(m2:Member)

WITH m, m2, COLLECT(e) AS events, COUNT(*) AS times
WHERE times >= 5

WITH m, m2, times,
 [event IN events | SIZE((event)<-[:RSVPD {response: 'yes’}]-())] AS attendances

WITH m, m2, REDUCE(score = 0.0, a IN attendances | score + (1.0 / a)) AS score

MERGE (m)-[friendsRel:FRIENDS]-(m2)
SET friendsRel.score = row.score

We create a score for the friendship
based on the likelihood that we met

them at an event - the more people that
attended the less likely we met

Who are my meetup friends?

When Clojure, When Cypher?

‣ The combination work very well for data
oriented programming

When Clojure, When Cypher?

‣ The combination work very well for data
oriented programming

‣ Cypher works best for...
• expressing graph patterns
• exploring relationships in data

When Clojure, When Cypher?

‣ The combination work very well for data
oriented programming

‣ Cypher works best for...
• expressing graph patterns
• exploring relationships in data

‣ Clojure is more suitable for…
• chaining functions to be applied to data
• Manipulating and massaging data

A different way of recommending

‣ Popular approaches use global number
crunching e.g. item based similarity

A different way of recommending

‣ Popular approaches use global number
crunching e.g. item based similarity

‣ Our approach is more personalised and
makes use of local searches around the
user’s neighbourhood

What could we do next?

‣ Comments sentiment analysis
• do people actually like the events they go to?

‣ Topic ontology
• how are topics related? e.g. Neo4j, Cassandra,

MongoDB are part of NoSQL

‣ Event similarity based on descriptions
• use Latent Dirichlet Allocation to derive categories

What could we do next?

‣ Social network
• what events do our twitter/Facebook friends attend?

‣ Location
• do we favour events in a certain part of town?

‣ Day of the week
• do we only go to events on certain days of the week?

• do we go to different events on weekdays vs

weekend?

That’s all for today!
Questions? :-)

Mark Needham @markhneedham

https://github.com/neo4j-meetups/modeling-worked-example
https://github.com/mneedham/clojure-recommendations

https://github.com/neo4j-meetups/modeling-worked-example
https://github.com/neo4j-meetups/modeling-worked-example
https://github.com/mneedham/clojure-recommendations
https://github.com/mneedham/clojure-recommendations

