
Microbenchmarking in Java
 

Ben Evans and James Gough

• Who are we?

• Why Microbenchmarking is not for everyone

• The need for JMH

• Demo of JMH

• Importance of Statistics in Benchmarking

This Talk

• Co-founder & Tech Fellow, jClarity

• Trainer and Author

• Surfer, whisky expert

• @kittylyst

About Us

Ben

James

• Java(script) developer, teacher and author

• Works primarily in Technology Training

• Father, Hacker, aspiring whisky expert

• @Jim__Gough

Bloomberg

• Java Community Process Executive Committee

• London Java Community

• Organising Team, AdoptAJSR

• Ben: Java Champion & JavaOne Rock Star Speaker

Community

• Ben

• Java in a Nutshell (6th Edition)

• Introduction to Java 8

• The Well-Grounded Java Developer

• Ben and James

• Optimizing Java (forthcoming)

Writing

• “A measurement-driven approach to understanding an
applications behaviour under load”

• Note: Measurement-driven

• This sets us up for a clash between people & data

• Performance is a huge topic

What Is Java Performance?

Performance Landscape

JIT compiler

Emitter

method cache

JVM

Interpreter

classloader

Java
source
code

.class
file

javac
Profiler

code cache

Garbage
Collection

Hardware

Databases/Networks/IO bound operations

Executing
Code Quality

• General-purpose library code broad use cases

• Developer on OpenJDK or another Java platform implementation

• Extremely latency sensitive code

• Low-latency trading

Where is Microbenchmarking Relevant?

• Main methods with self invented timers

• Time for the pub!

• Google Caliper

• Not very active (last commit in Jan)

• Struggled to avoid the JVM bear traps

Microbenchmarking Frameworks

Criterium (Clojure)

 Criterium measures the computation time of an expression. It is designed to address
some of the pitfalls of benchmarking, and benchmarking on the JVM in particular.

 This includes:

• statistical processing of multiple evaluations
• inclusion of a warm-up period, designed to allow JIT to optimise code
• purging of gc before testing, to isolate timings from GC state prior to testing
• a final forced GC after testing to estimate impact of cleanup on the timing results

• JMH

• Written by the authors of the JVM

• Used to performance test parts of the JVM

• Learned from others mistakes (hopefully)

Microbenchmarking Frameworks

• Understands the JVM, because they wrote it

• Power Management Issues

• Power management can cause poor benchmarks

• JMH uses spin loops to ensure core is activated

• OS Scheduling Issues

• Scheduling issues resolved by running process longer

Why JMH?

• Benchmark frameworks must be dynamic

• Using reflection can introduce issues

• Optimisations between test and benchmark

• JMH generates wrapper code to avoid this

• Carefully avoiding JVM optimisations

• These complexities are hidden from the user

• It’s hard enough to write that code

Selecting and Executing Benchmarks

• Problem1

Common Benchmark Issues

http://xkcd.com/1691/

• A pitfall is part of the benchmark being optimised away

• Easily happens when nothing is done with the result

• JMH provides an easy mechanism to prevent this

• Must be efficient and avoid optimisation

Optimising Away Benchmarks….

public volatile int i1 = 1, i2 = 2;

public final void consume(int i) {

if (i == i1 & i == i2) {

 // SHOULD NEVER HAPPEN

 nullBait.i1 = i;

 }

}

Blackholes

public int tlr = (int) System.nanoTime();

public final void consume(Object obj) {

int tlr = (this.tlr = (this.tlr * 1664525 +
1013904223));

 if ((tlr & tlrMask) == 0) {

 // SHOULD ALMOST NEVER HAPPEN IN MEASUREMENT

 this.obj1 = obj;

 this.tlrMask = (this.tlrMask << 1) + 1;

 }

}

Blackholes

$ mvn archetype:generate \

 -DinteractiveMode=false \

 -DarchetypeGroupId=org.openjdk.jmh \

 -DarchetypeArtifactId=jmh-java-benchmark-archetype \

 -DgroupId=org.sample \

 -DartifactId=test \

 -Dversion=1.0

Getting Started

Demo Time

• Cognitive Biases in Performance

• Review of statistics for the JVM

Empirical Performance Analysis

• Humans are poor at guessing

• Measurements can be subjective

• Especially Time measurements

• We all have cognitive biases

• Especially Confirmation Bias

Why Measure?

• Cognitive biases are psychological tendencies
that cause the human brain to draw incorrect
conclusions.

Cognitive Bias - Definition

• Confirmation Bias

• Reductionist Bias

• Action Bias (“Fog of War”)

• Anti-Risk Bias

• Hyperbolic Discounting

• Information-Gathering Bias

Cognitive Biases

• Texas Sharpshooter Fallacy

• Clustering Illusion

• Disregarding Regression to the Mean

• Attention Bias

• Recency Bias

Probability-Specific Cognitive Biases

• Developers tend to think along “golden paths” in code

• Testers are trained to think down darker paths

• Modern systems are exceedingly complex

• Lots of external meddlers

• Virus scans, other apps, backups, the cleaner...

Why Measure?

• Best tool against cognitive biases is data

• Need logging & monitoring

• But also analysis

• Data can overwhelm

• Patterns aren’t always easy to spot by eye

Humans are bad at spotting patterns

• Proper collection processes are needed

• Too many outages are analysed via ad-hoc data

• Ensure sufficient logging

• Can we retrace all the steps of an outage?

Measurement & Statistics

• Treat our performance observables like experimental data

• Collect data

• Build distributions

• Account for and understand sources of error

• Systematic Error (Accuracy)

• Random Error (Precision)

Statistical Data

Systematic and Random Error

• Everyone should know:

• Mean

• Mode

• Percentiles

• Probability distributions

Know Basic Statistics

• Sometimes useful

• Standard Deviation (be careful)

• Significance Levels

• Central Limit Theorem

• p-values

Know Basic Statistics

Normal distributions

0 1 2-2 -1

• Real data often is not normally distributed

• JVM applications have a “hot path” where everything works

• Deviations from the path add latency

• Latency >> random error

• Latency is never negative

• Gives rise to a “long tail” distribution

• Technically, a specific kind of Gamma distribution

Non-Normal Statistics

• Non-robust statistics simultaneously:
• Bend to skew by outliers

• Dilute the meaning of those outliers

• - from “Statistics for Software” by Mahmoud
Hashemi (Paypal)

Non-Robust Statistics

• Normally-distributed statistics

• Are easy and familiar to many

• Aren’t much help for most software performance

• Especially standard deviation

Non-Normal Statistics

Gamma distribution

• Key quantity: Dynamic Range (DR)
• DR = Max / Min

• One useful technique is “long-tail percentiles”

• Compensates for the high dynamic range

• Example

• Getter method timing

Long-tail Percentiles

50.0% level was 23 ns
90.0% level was 30 ns
99.0% level was 43 ns
99.9% level was 164 ns
99.99% level was 248 ns
99.999% level was 3,458 ns
99.9999% level was 17,463 ns

Bimodal distribution

• Recall HTTP Response Codes

• 2XX (Success)

• 4XX (Client Error)

• 5XX (Server Error)

Different Outcomes Have Different Distributions

Client Error Response Times

Server Error Response Times

Success Response Times

Combined Response Times

Hat or Elephant?

Subpopulations Within Success

Why is the JVM a Special Case?

“C++ implementations obey the zero-overhead principle:
What you don't use, you don’t pay for.
And further, what you do use, you couldn't hand code any better.”

- Bjarne Stroustrup

“Java is a blue-collar language. It’s not PhD thesis material but a
language for a job.”

- James Gosling

 THANK YOU

Products

jClarity Censum: The world’s best GC log analysis tool

jClarity Illuminate: The learning performance problem finder

Community - www.meetup.com/londonjavacommunity
Email - ben@jclarity.com, jpgough@gmail.com

Books:
Java in a Nutshell (6th Edition) - O’Reilly
The Well-Grounded Java Developer - Manning

Forthcoming: Optimizing Java

http://www.meetup.com/londonjavacommunity
mailto:ben@jclarity.com
mailto:jpgough@gmail.com

