
© 2015 Teradata1

Microservices: lessons from the trenches

• Andy Ben-Dyke
1. 2 key takeaways
2. Microservices 101
3. How did I get here?
4. 6 Pros and 3 Cons
5. Summary

© 2015 Teradata2

2 Key Takeaways

• Watch Martin Fowler’s 2014 video on Microservices (last of the 3 videos)

– Excellent pragmatic overview of the basic concepts
– Sensible set of guidelines on when to use microservices versus monoliths

• Watch Coda Hale’s 2011 talk on Metrics, Metrics Everywhere

– The first 15 minutes are just excellent
– All developers should “Mind the Gap” and deliver “Business Value”

https://www.thoughtworks.com/talks/software-development-21st-century-xconf-europe-2014
http://www.youtube.com/watch?v=czes-oa0yik

© 2015 Teradata3

Microservices 101

© 2015 Teradata4

Microservices Summary

• What are Microservices
– Small, and focused on doing one thing well
– Autonomous

• Key benefits
– Technology Heterogeneity
– Resilience
– Scaling
– Ease of Deployment
– Organizational Alignment (Conway’s Law, Scrum teams, DevOps)
– Composability
– Optimizing for Replace-ability

• Not a “Sliver Bullet”
• As much about “culture” as “technology”

© 2015 Teradata5

Characteristics of a Microservice Architecture (Martin Fowler)

1. Componentization via services
2. Organized around business capabilities (DevOps)
3. Products not projects
4. Smart endpoints and dumb pipes (not EMBs!!!)
5. Decentralized governance (technology heterogeneity, teams)
6. Decentralized data management
7. Infrastructure automation (DevOps)
8. Design for failure (the Chaos Monkey!!!)
9. Evolutionary design

© 2015 Teradata6

How did I get here?

• CTO of RainStor, a UK-based startup
• Working with commercial Big Data since 2008
• R&D using Scrum since 2008
• OEM business to $2M revenue by 2012: HP, Informatica, Anritsu, …
• First commercial SQL product on Hadoop (disputed)
• Direct sales since 2012: AT&T, T-Mobile, Credit Suisse, and Barclays
• 35 employees, majority in R&D
• $8M revenue at end of 2013
• Acquired by Teradata end of 2014
• But…

© 2015 Teradata7

My Introduction to Microservices

• Teradata put the RainStor product into maintenance mode start of 2016
– “Business value” decision by Teradata
– …but a number of technical and business mistakes were made
– ...our recent experience would have helped avoid some of them

• Existing R&D team formed the Teradata IoT Analytics team
• 4 Data Scientists added, plus 2 off-shore developers
• Team is now working on two new products:
– One is based upon Kafka and using Microservices
– Other has 0 lines of code, and will use Microservices

• Support team and PS team re-tooled as DevOps
• We’re now into our third Sprint…

© 2015 Teradata8

So How’s it Going?

• From my perspective as an experienced builder of monoliths
– 6 Pros versus 3 Cons
– roughly in priority order
– …but the Cons are really, really big!

© 2015 Teradata9

Pro: “Business Value” and “Good Enough”

• Watch Coda Hale’s video on Metrics, Metrics, Everywhere!!!
• Everyone should be focused on delivering business value
– It should be the core part of any interaction/discussion
– Testers and Engineers: shout if the business value is unclear!

• But only ever aim for good enough
– Identify any parts of the product which aren’t good enough!

• Using a combination of these two concepts has significantly improved
all aspects of our team’s work
– Great acid test for story creation
– Easy to determine when a story is done
– Most long rambling discussions can be cut short

© 2015 Teradata10

Pro: Clean Slate

• 2 week Sprint process delivering Docker images
• Development:

– Java 8
– Gradle: style checking, PMD, FindBugs, code coverage
– GIT
– Jenkins and Artifactory
– Libraries: Junit, LogBack, Metrics, Vert.x (REST)
– Code reviews every week

• Test:
– End-to-end testing via Cucumber
– REST Assured <- main focus for the test team
– Performance testing TBD
– Test reviews with developers every week

© 2015 Teradata11

Pro: Cucumber (Behaviour-Driven Development)

© 2015 Teradata12

Con: Depth of our Technical Stack

• The basic OS:
1. OpenStack: manage VMs
2. Vagrant: provision VMs
3. Ansible: configure VMs
4. Docker: provides lightweight Ubuntu containers
5. Mesos: distributed CPU/Memory/Disk provisioning
6. Marathon: manages applications

• Other services
1. Kafka: distributed messaging system
2. ELK: logging and monitoring

© 2015 Teradata13

Con: OpenStack on Bare Metal

• We hade lots of in-house experience with Cloud and VMs
– how hard could it be?

• It was extremely painful to get OpenStack!
– 6+ weeks to get happyish (1 DevOps out!)

• Should have used AWS (but it is expensive)
• Should have used Mirantis
• However, working through the pain is beginning to pay off

© 2015 Teradata14

Con: What is going on here? How many cores?

© 2015 Teradata15

Pro: Mind the Gap!

• From Coda Hale!!!
• Design for failure
– not just logging!
– monitoring and alerting
– use ELK as a minimum

• DevOps culture
– design for supportability
– always be thinking about install/upgrade/reconfiguration
– always have a DevOps on each Story

• Capture and trend all metrics that relate to business value

© 2015 Teradata16

Pro: Sociology

• Parkinson’s Law
– If you give someone 8 hours to fill a bath it will take 8 hours…
– 2 week Sprints turn this into a very real problem
– We now combat using “Good Enough” to close a story
– …but we now have a problem starting stories midway through a Sprint
– => out estimating via story points is not good enough (Mind the Gap!)

• Conway’s Law:
– System architecture will always mirror the organization’s structure
– If you have 4 teams building a compiler, you will end up with a 4-pass compiler
– Not sure if we’ve got this right yet…
– Avoided splitting into functional teams – e.g. query team and an apps team

• Shared Vision (Coda Hale, yet again!)

© 2015 Teradata17

Pro: Security Model defined for us

• HTTPS with signed certificates for REST
• LDAP for user authentication and authorization
• API tokens for collectors and end points
• (not sure about delegation)

© 2015 Teradata18

Summary

• How do you start a Microservices project?
– Mandate it – massively expensive
– Already be doing it somewhere else
– Start small: refactor a monolith into 2-3 pieces

• Always Mind the Gap
– Keep checking that your understanding is correct
– Most of my mistakes can be attributed to not doing this

• Culture is really, really important

© 2015 Teradata19

2 Key Takeaways

• Watch Martin Fowler’s 2014 video on Microservices (last of the 3 videos)

– Excellent pragmatic overview of the basic concepts
– Sensible set of guidelines on when to use microservices versus monoliths

• Watch Coda Hale’s 2011 talk on Metrics, Metrics Everywhere

– The first 15 minutes are just excellent
– All engineers should “Mind the Gap” and deliver “Business Value”

https://www.thoughtworks.com/talks/software-development-21st-century-xconf-europe-2014
http://www.youtube.com/watch?v=czes-oa0yik

© 2015 Teradata20

Microservices Links

• Martin Fowler
– 2014 video on Microservices (last of the 3 videos)
– A definition of Microservices (9 characteristics)

• Sam Newman
– Building Microservices, O’Reilly, February 2015

https://www.thoughtworks.com/talks/software-development-21st-century-xconf-europe-2014
http://martinfowler.com/articles/microservices.html
http://www.amazon.co.uk/Building-Microservices-Sam-Newman/dp/1491950358

