
Copyright © 2016 Alex Blewitt

Modularity in Java
With OSGi

Alex Blewitt
@alblue

Docklands.LJC
January 2016

Copyright © 2016 Alex Blewitt

Modularity in Java

Copyright © 2016 Alex Blewitt

Modularity is Easy?

Copyright © 2016 Alex Blewitt

Modularity is Hard!

Copyright © 2016 Alex Blewitt

Modularity is Hard!

Copyright © 2016 Alex Blewitt

Modularity is Hard!

Copyright © 2016 Alex Blewitt

Modularity is Hard!

Copyright © 2016 Alex Blewitt

Modularity is Hard!

Copyright © 2016 Alex Blewitt

Modularity is Hard!

Copyright © 2016 Alex Blewitt

Modularity is Hard!

Copyright © 2016 Alex Blewitt

Modularity is Hard!

Copyright © 2016 Alex Blewitt

Modularity is Hard!

Copyright © 2016 Alex Blewitt

Modularity is Hard!

Copyright © 2016 Alex Blewitt

Modularity is Easy?

Copyright © 2016 Alex Blewitt

Modularity is Hard!

solutions are complex

solutions are hard

sufficiently advanced technology is
indistinguishable from magic

Copyright © 2016 Alex Blewitt

Modularity is Hard!

OSGi is complex

OSGi is hard

sufficiently advanced technology is
indistinguishable from magic

Copyright © 2016 Alex Blewitt

Modularity is Hard!

sufficiently advanced technology is
indistinguishable from magic

Jigsaw is hard

Jigsaw is complex

Copyright © 2016 Alex Blewitt

Why do people think
modularity is easy?

• Java's modular already, right?

• Fields and Methods

• Classes

• Packages

• JARs Maven/Gradle

"Lies to Children"

Copyright © 2016 Alex Blewitt

• Terry Pratchett – Science of the Discworld

Any explanation of an observed phenomenon
which, while not 100% scientifically accurate, is
simple enough, and just accurate enough, to
convey the beginnings of understanding to anyone
who is new to the subject.

*also known as Lies to Bosses

*"Lies to Children"

http://wiki.lspace.org/mediawiki/index.php/Lies-To-Children

http://wiki.lspace.org/mediawiki/index.php/Lies-To-Children

Copyright © 2016 Alex Blewitt

• Fields are private

• Apart from reflection

• Fields are final

• Apart from setAccessible

• Methods are standalone

• Apart from lambdas and inner classes

"Lies to Developers"

Copyright © 2016 Alex Blewitt

• Classes are encapsulated

• Apart from dependent types for internal dependencies

• Packages are boundaries for classes

• Except cyclic references between packages can easily
occur

• JARs are unique elements of deployment

• Except JARs can contain duplicate classes  
("first one wins")

"Lies to Developers"

Copyright © 2016 Alex Blewitt

• Only one class/static per VM

• Classes are unique per ClassLoader, not VM

• JARs are versioned

• Except no-one agrees on version numbers

• Semantic versioning is important

• Except when it isn't

"Lies to Developers"

https://github.com/vert-x3/wiki/wiki/3.1-Release-Notes

https://github.com/vert-x3/wiki/wiki/3.1-Release-Notes

Copyright © 2016 Alex Blewitt

Semantic Versioning

1.2.3.db4fa6
Major

Minor
Patch Qualifier

Breaking
Change

New
Features

Bug
Fix

Build Identifier
Timestamp

http://semver.org

Numeric Textual

http://semver.org

Copyright © 2016 Alex Blewitt

What Developers believe
• Dependencies are easy to manage

JitWatch 1.0.0 slf4j-api 1.7.7

logback-classic 1.1.2 logback-core 1.1.2

Copyright © 2016 Alex Blewitt

What Developers believe
• Transitive dependencies are easy to manage

JitWatch 1.0.0 slf4j-api 1.7.7

logback-classic 1.1.2 logback-core 1.1.2

logback-core 1.1.2 slf4j-api 1.7.6

jansi 1.9

Copyright © 2016 Alex Blewitt

What Developers believe
• Optional transitive dependencies are easy to

manage
JitWatch 1.0.0 slf4j-api 1.7.7

logback-classic 1.1.2 logback-core 1.1.2

logback-core 1.1.2 slf4j-api 1.7.6

jansi 1.9

groovy-all 2.0.7 jansi 1.6

Copyright © 2016 Alex Blewitt

What Developers believe
• Test optional transitive dependencies are easy to

manage
JitWatch 1.0.0 slf4j-api 1.7.7

logback-classic 1.1.2 logback-core 1.1.2

logback-core 1.1.2 slf4j-api 1.7.6

jansi 1.9

groovy-all 2.0.7 jansi 1.6
subethasmtp 2.1.0 slf4j-api 1.6

* many dependencies not shown for brevity

Copyright © 2016 Alex Blewitt

What Developers hope
• It all just works

slf4j-apijitwatch logback-classic logback-core jansi janio

Copyright © 2016 Alex Blewitt

What the JVM sees
• Series of JARs loaded in a ClassLoader

slf4j-apijitwatch logback-classic logback-core jansi janio

Copyright © 2016 Alex Blewitt

What the JVM sees
• JVM sees a one-dimensional list of classes

slf4j-apijitwatch logback-classic logback-core jansi janio

Copyright © 2016 Alex Blewitt

Looking up classes
• Resolving a class is stepping along to find it

• Packages are ignored

• No concept of modularity

Copyright © 2016 Alex Blewitt

Module busting
• Compile- & run- time dependencies may differ

• Class.forName() can bust through module barriers

• Dynamic instantiation may look up implementation

• SLF4J – which logger to use

• Hibernate – looking up database drivers

• Annotation scanners walk the entire list of classes

Copyright © 2016 Alex Blewitt

Modularisation
• Only adds benefit once reaching a certain size

• No-one needs a Hello World module

• Difficult to retro fit

• (Just ask the Jigsaw team)

• Prevents accidental leakage between packages

• jetty-client 6.1.23 -> jetty (server) 6.1.23

util package

org.mortbay.io package

Copyright © 2016 Alex Blewitt

Packages are leaky
• Classes are oblivious to package boundaries

slf4j-apijitwatch logback-classic logback-core jansi janio

Friendly classes/interfaces are only
available in the same package

However the same friendly package can
be present in two or more JAR files

Copyright © 2016 Alex Blewitt

Packages are leaky
• Classes can follow transitive chain accidentally

slf4j-apijitwatch logback-classic logback-core jansi janio

It is easy to accidentally depend on a class that
comes from a transitive dependency without

realising that it has happened

JIT watch does not do this; it's used as an example

Copyright © 2016 Alex Blewitt

Packages are leaky
• JARs can have cycles

slf4j-apijitwatch logback-classic logback-core jansi janio

More common in unstructured
builds or single-project IDEs

Copyright © 2016 Alex Blewitt

Unstructured builds
src/com/example/client/Client.java

javac -d client com/example/client/*.java

public class Client {
 void method() {
 }
}

import com.example.server.AnException;

src/com/example/server/Server.java
src/com/example/server/AnException.java

javac -d server com/example/server/*.java

throws AnException {
Client directory now contains
 client/com/example/server/

AnException.class

Copyright © 2016 Alex Blewitt

Accidental dependencies
java.beans java.util

java.io
java.awt

java.applet

Everything depends
on util …

Because a BeanDescriptor
can have an java.awt.Image

Twenty years later and
Applets are still the bane

of Java's existence!

Beans.instantiate
takes a parameter

AppletInitializer

Copyright © 2016 Alex Blewitt

Easy come, hard go

http://openjdk.java.net/projects/jigsaw/doc/jdk-modularization.html
http://cr.openjdk.java.net/~mchung/jigsaw/graphs/jdk8-b48.png

Diagram is based on older
Java 8 version, may change

Bidirectional module
dependencies!

Beans and Desktop
were merged in Java 9

http://openjdk.java.net/projects/jigsaw/doc/jdk-modularization.html

Copyright © 2016 Alex Blewitt

It's amazing anything
works at all …

Copyright © 2016 Alex Blewitt

How do we solve
these problems?

Copyright © 2016 Alex Blewitt

Module barriers
• Good fences make good neighbours

slf4j-apijitwatch logback-classic logback-core jansi janio

Copyright © 2016 Alex Blewitt

Module barriers
• Good fences make good neighbours

slf4j-apijitwatch logback-classic logback-core jansi janio

module

Exports Depends

Copyright © 2016 Alex Blewitt

OSGi and Jigsaw
This is where they start to differ

OSGi
• Dynamic
• MANIFEST.MF
• Services
• Export

• Package
• Import

• Module*
• Package

• Versioned
• Module
• Package

Jigsaw
• Static
• module-info
• ServiceLoader
• Export

• Package
• Import

• Module*

• No versioning

* Module dependencies may be declared as transitive

Copyright © 2016 Alex Blewitt

OSGi

Require-Bundle Import-Package

Export-PackageModules in OSGi
are called
Bundles Each bundle exports

its own public API via
packages

Dependencies
can be on whole

bundle

Or can be on a
package by

package basis

Copyright © 2016 Alex Blewitt

MANIFEST.MF
Export-Package: com.example.ui.widgets
Import-Package: com.example.util
Require-Bundle: com.example.monolith
Bundle-SymbolicName: com.example.ui
Bundle-Version: 1.2.3
Bundle-ManifestVersion: 2

MANIFEST.MF

Manifest.MF chosen because it is first file
in JAR and therefore easily accessible

Copyright © 2016 Alex Blewitt

How is the manifest used?
• Can be used by compiler to construct paths

• Can be used by runtime to ensure dependencies

• Can be used by IDEs to wire projects together

• Can be used to resolve dependencies from repo

• Can be used by GUIs to show content

• Can be used by humans for documentation

Copyright © 2016 Alex Blewitt

OSGi Frameworks
• Bundles are managed by a framework

• Felix

• Equinox

• Knopflerfish

• Prosyst

OSGi frameworks are
like WebApp engines
like Tomcat or Jetty

1. Start Tomcat
2. Drop in WAR file
3. Profit!

Copyright © 2016 Alex Blewitt

OSGi Frameworks
• Bundles are managed by a framework

• Felix

• Equinox

• Knopflerfish

• Prosyst

OSGi frameworks are
like WebApp engines
like Tomcat or Jetty

1. Start Tomcat
2. Drop in WAR file
3. Profit!
1. Start OSGi
2. Drop in JAR file
3. Profit!

Copyright © 2016 Alex Blewitt

OSGi Frameworks

INSTALLED RESOLVED ACTIVE

?

How do we refer
across bundles?

Copyright © 2016 Alex Blewitt

OSGi Services
• Services provide a way of bundles to communicate

• Have a shared interface (e.g. java.sql.Driver)

• Bundles can provide service instances

• Bundles can require service instances

• Service registry stores service instances

Copyright © 2016 Alex Blewitt

OSGi Services
java.sql

org.hibernate com.mysql.jdbc

Service Registry
Implementation
com.mysql.jdbc.Driver

Interface
java.sql.Driver

class.forName()

Inversion
of control

Copyright © 2016 Alex Blewitt

OSGi Services
java.sql

org.hibernate com.mysql.jdbc

context.registerService(interface,instance)

The framework gives you the
BundleContext, like Spring

gives an ApplicationContext

Copyright © 2016 Alex Blewitt

OSGi Services
java.sql

org.hibernate com.mysql.jdbc

context.registerService(interface,instance)
context.getService(interface)*

* actually it gets a Service from a ServiceReference

Copyright © 2016 Alex Blewitt

OSGi Services
java.sql

org.hibernate com.mysql.jdbc

context.registerService(interface,instance)
context.getService(interface)

Service users have to cope with
the service not being present
(null) and acting accordingly

Copyright © 2016 Alex Blewitt

OSGi Services
java.sql

org.hibernate com.mysql.jdbc

Declarative Services

I can provide a DriverI can need a Driver
<xml/><xml/>

Can be generated from
annotations in code

Copyright © 2016 Alex Blewitt

Dynamic OSGi

Copyright © 2016 Alex Blewitt

How does this work?
• Things can't come and go in a Java program!

• Because classes are cached by the ClassLoader

• WebApps can come and go in a Tomcat server …

• Each WebApp gets its own ClassLoader

• When WebApp is removed, ClassLoader goes

• Classes are recycled

Copyright © 2016 Alex Blewitt

Bundle barriers
• Each bundle has its own ClassLoader

slf4j-apijitwatch logback-classic logback-core jansi janio

Each module ClassLoader
implements visibility rules

When module is stopped,
ClassLoader thrown away

Works in the same way as
Tomcat and WebApps

👮 👮 👮 👮 👮 👮

ClassLoader is
the API police

Copyright © 2016 Alex Blewitt

ClassLoaders

• ClassLoaders are critical to the success of Java

• Allowed evolution of files -> JARs -> Jmods

• Propelled Java into enterprise with Servlets

• Popularised Java through AppletClassLoader

ClassLoaders are the
guardians of the Java spirit

Copyright © 2016 Alex Blewitt

Getting Started with OSGi
1. Update existing build to generate OSGi metadata

• Maven: maven-bundle-plugin

• Gradle: apply plugin: 'osgi'

• or: apply plugin: 'biz.aQute.bnd'

2. Install bundles into OSGi framework

3. Use OSGi console to inspect dependencies

Copyright © 2016 Alex Blewitt

Getting Started with OSGi
4. Use annotations to define service components

5. Decompose larger bundles into smaller ones

6. Review dependencies regularly

7. Use a tool to verify semantic versioning

Copyright © 2016 Alex Blewitt

OSGi and Jigsaw
• OSGi and Jigsaw have different target markets

• OSGi uses a dynamic application runtime

• Jigsaw is about the modular JDK

• Both will encourage Java developers to modularise

• They share far more in common than differences

Copyright © 2016 Alex Blewitt

OSGi and Jigsaw
• Changes for Jigsaw will benefit OSGi & vice-versa

• Fixes for Class.forName()

• Proper segregation into modular boundaries

• Using services to acquire implementations (IoC)

• OGSi and Jigsaw interoperability getting closer

• "OSGi and Java 9 Modules Working Together"  
(Neil Bartlett)

http://njbartlett.name/2015/11/13/osgi-jigsaw.html

Copyright © 2016 Alex Blewitt

OSGi and Jigsaw

OSGi

Jigsaw

Copyright © 2016 Alex Blewitt

OSGi and Jigsaw

OSGi

Jigsaw

Similarities
• Module paths
• Strict separation
• Future of Java
• Services to separate

Differences
• Static vs Dynamic
• Package imports
• Service creation
• Versioning
• JARs vs Jmods
• Java Any vs Java 9

Can OSGi use Jigsaw modules or load Jmods?
Can Jigsaw modules use OSGi bundles?
Can Jigsaw services be created manually?

Copyright © 2016 Alex Blewitt

Future of Java
• The future of Java is modular

• Will cause some pain

• Will highlight less-than-perfect dependencies

• Will cause problems for Class.forName() code

• No "one true classpath"

• Module paths are the path to success

Use .class
instead

Copyright © 2016 Alex Blewitt

Questions?
Modularity in Java with OSGi

Alex Blewitt
@alblue

Docklands.LJC
January 2016
http://docklandsljc.uk

http://docklandsljc.uk

