A brief history of
Unicode

® happens

Alex Blewitt
@alblue

Copyright (¢c) 2016, Alex Blewitt

What is Unicode?

« Unicode is an industry standard for representing text

* Defines a number of code points that map to characters

N\
N\

N\

of a
of a
of a

characters are visible (control characters)
characters are standalone (accents)
code points refer to characters (some are undefined)

Does include all major ideographs from a variety of languages

U+0041 == ‘A", U+20AC == ‘€’

 Pop quiz: what size are Unicode code points?
e 8-Dit

* 1o-bit
o 32-Dit

Unicode: a 21-bit code point

* All characters in Unicode are logically 21-bits wide
* Not a great format for encoding data in computers!
 How did we end up with a 21-bit character set?

* o explain that, we have to look backwards in time ...

 Before Unicode ...

 Many variations of character sets with different meanings
e Single-byte

e |SO-8859-1 (CP-1252), ISO-8859-2, ... 1S0O-8859-9

« ASCII, EBCDIC
o Multi-byte

. 1SO-2202-CN, 1SO-2202-JP, 1ISO-2202-KR (CJK)

What does all of this mean”

 Character sets and code pages assigned meanings
e Ox41 ="A
e OxDO =7
¢ |SO-8859-1 = ‘D’
¢ |ISO-8859-3 = <missing>
. 1SO-8859-9 = ‘G’
- EBCDIC =}
o All based on ASCII (well, except EBCDIC ...)

* Pop quiz: what size are ASCI| code points?
e 3-bit
e 10-Dit
e 32-Dit

ASCII Is a 7-bit code point

 \WWho needs power-of-two”?
 American Standard Code for Information Interchange

e Defined to harmonise existing incompatible encodings
« ASCII was the Unicode of the telegraph era

e First 128 characters of ASCII are same as
 Unicode
e |SO-8859-1 (aka Latin-1)
e« CP1252 (Windows)

e Where did ASCII come from?

O
D
<

EED Enng%__-___z
mum__n_mn_____n_______p

—
O|lx|Jd
Cl|2'0|w

nn _m-u w|a -m‘-m‘m“

m..nnnnnnmnununnnuu <
K DEEEEDEER0 SnnnaEk:

H [o]elele]-[-[-[-]e[efolo]=[-[-]- §
Alelolelolo o[l IFIFI--IFH 2

Lower

“
“

D
Q.
(o
=
T
o)
£
o
®
2
O
o
O
b
<
ol
>

f_card.png

| Code Chart-Quick re

http.//en.wikipedia.org/wiki/ASCII#/media/File:ASCI

ASCI| control characters

* Many are now obsolete but stem from telegraph days
XML disallows control characters other than CR, LF, HT

* Some were used for printer control mechanisms
« HT/VT — horizontal or vertical tab (" /AK)
e LF/FF —Iline feed/form teed (~J/AL)
 CR - carriage return (M)

e Some are used for notification
 BEL —ring the bell ("G is beep in Unix terminals)

e Some were used for notification
o ACK/NAK/STX/ETX/SYN
e ESC/NUL

lelegraphs and teletypes

e [elegraphs revolutionised communication
» Characters sent as an electric encoding of bits
e Various encoding supported characters
 Needed standardisation ...

* [eletype printers would print out punched paper tapes
* Paper tapes could be optically read
e /dev/tty in Unix stands for ‘teletype’
« /dev/ttyS1 stands for ‘teletype on serial port 1’

 Punched cards and tapes were common

Colossus computer

Used to crack codes from the Lorenz
telegraph with paper tape

sabfeloi

AT Y™
! X

htto://en.wikipedia.org/wiki/Colossus_computer

Baudot, Murray and ITA2

 Baudot created first fixed length 5-bit encoding

* Also gave name to ‘baud’ as symbols-per-second
(not bits)

e Became known as |TA"
e Created ~ 1870

* Murray encoding created ~ 1900
* Modified patterns to minimise wear on punches
* Defined NUL as O, introduced CR and LF, Backspace
* Evolved to ITA2 ~ 1930

Baudot, Murray and ITA2

 Baudot created first fixed length 5-bit encoding

* Also gave name to ‘baud’ as symbols-per-second
(not bits) Hello World
e Became known as |TAT

e Created ~ 1870

—_— — -— — N —

* Murray erjjiss
. Modifiedl
e Defined

 Evolved

ERS

CODE
ELEMENTS

The International Telegraph Alphabet

http.//en.wikipedia.org/wiki/Baudot_code

Shifting in Baudot code

* The astute of you will notice 5 bits isn't enough
e 20 letters + 10 digits > 275 (32)

e This was solved with the idea of a shift

 Based on idea of typewriters

 Meant that decoding was based on state
e Letter mode -Hello World

@ INDICATES A MARK ELEMENT (A HOLE PUNCHED IN THE TAPE)
O INDICATES POSITION OF

Morse Code

 Morse code is a variable length encoding
e Dots or dashes to represent characters
* |nitial encoding for radio with human operators
* [nvented in ~1840

e Practical for humans to hear and decode / send

Punched Cards

 Punched tape itselt was an evolution of cards
 Each card represented a ‘line’, each column a letter

http.//en.wikipedia.org/wiki/Punched_card

Punched Cards

 Punched tape itselt was an evolution of cards
 Each card represented a ‘line’, each column a letter

o S i ot G R CRNCTLELES S e
o Kl]r\sm SENDE l'nsunu\'pm Tkl \SI _ ek

| u 3rzmq‘o ~.,-@

b P

Q G < grasteres thed? . .
BC ;-“-“c-n Dy Yo o '
LJ&M%OW@%Oﬁmmf e A R)

http.//en.wikipedia.org/wiki/Punched_card
http.//en.wikipedia.org/wiki/Silver_certificate_(United_States)

When were punched cards
used?

 WWhen were punched cards

e 19600 Jaqguard Loom
. 1950 1800 R
e 1940
e 1930

e 1920 US Census - "‘rff?"% e
1910 1890

. wwwe
. AEEE sese wew

SELs Swew wmew
eu -

—————————————
tteee—c—
LI - - se ~— ssss Sees siss

Punched cards \egaoy

{27

e Legacy of punched cards still with us .

» Cards were 80 columns wide ‘~|Illlw-'c~
« Led to early terminals having an 80 col display 00 un Iu 00 |

« Some |IDEs and text editors have a wrap at 80 [l 1 31X
* 8 characters were often used for numbering EEEEESEREY ‘@

l
« Fortran ignored characters in columns 73-80 133133333 133
e Some text editors will wrap /warn after column 72 I '

-Gitomit messages should be wrapped at 72

|

Punched cards and line
NnUMDEers

* Dropping a stack of cards was an expensive
operation ...
* Radix sort of columns 73-80 can be used to fix

e Or just put a diagonal line through them ...

EBCDIC

 EBCDIC is the Extended BCD Interchange Code
« BCD is Binary Coded Decimal, e.g. Ox12 is 12 decimal

Digits Special Characters

U123450033 abuner A LJKLIMRUPIRSTUYHEY S die o S(H1=ISHD G/ g R D50 =" “\
i i

110005000 110N
oooooooooooooo00000000000000NNRNERNo00000000000000000 RN N00000000000

E?E|wnnnusnnunaaaaxaanaasnnnusunaauuuaua«nu«anunusunununuuuuununnnnnnunnnnn
 BRREARRRRRER! RRRERRRE! RRRRRR AR AR R R R R R AR R R RRRRRRERARAI RRRRRRRRRERERRRARE
222222822222222222202222222202222222022222222222202222220222222022222082222222222
333333393333333333339§33333333033333330333333333333933333303333330333333333333133
A48 aaa ittt aaaBaaaaaaaaBaaaaaaataasaaaanaaDataaasacasaaocsnaodssnany
55555555505555555555550555555555555555055555555555505555550555555055555005555555
s666666666Hc65666666666666666666666666606666666666660666666 666666 66666666666
IR R R RN R R R R R R R Rl R R Rl AR AR AR R AR R R R AR R AR R AR RARRE
sssesssssssseccsosncsossasssssaafosasasaoascsoUNRNN RN RNRNRNRNRNNcsssS

PNHROBHENTEND2N0NBRNTANRNNRIAUBRTBINNQQAUMUB/TBAVNIRVUSNTINIVIROMEBSHIBBRNITIRININBIRTIANN

poool
12345
11111

O
O
O
T
O
S
S
S
D
O
O
M
=
QP
O

Figure 4. Card Codes and Graphics for 64-Character Set hﬁ,o//WWW columbia. edU/CU/COm,OUZL/'th/'StOr)//

EBCDIC

BCDIC Code Table

o bt L Inl!ﬂﬂbla_t HEEE

EECOTMEOODOOODCERENENE

nnnﬂ.nIII.IIII-nn?III
nnnn'ﬂII.III-III-mIIﬂ
ofol-1-1» | | |&] |=f=ISi8l | | | |S[2] |3
nnnn‘mmm.nmmn..m..mml
-

2 < . @

_m___________n_u__

)
. ; \l’ : O . x = nnnnH

B6
83 82 Bl

-
B4

01O} 0000 st dOd Ul 6-0

JPg

ebcdic_table

r_carads/

http.//ferretronix.com/march/compute

EBCDIC challenges

* Not all was well with the EBCDIC character set
e Rarely used outside of IBM mainframes
e Different sort ordering to ASCI|
o ASCI| has 0-9, A-Z, a-z
« EBCDIC has a-z, A-Z, 0-9 (and not contiguous; ‘a’-'z’ = 25)
 Created around same time (1963)

« |IBM’s mainframes had peripherals using punched cards
« Easier to translate punched cards into EBCDIC

« Mainframes could be switched into ASCII but programs
failed

e Shares similar control characters to ASCI|
« Form Feed, Tab, Escape ...

Putting history together

Telegraph Automation
Morse Code (1840) Jacquard Loom (1800)

Baudot Code (1870)
Hollerith Card (1890)

Murray/ITA2 (1900)
Computing
Fortran (1960)

ASCII (1963) EBCDIC (1963)
1ISO-8859-* (1985)
Unicode 1.0 (1991) — 16 bit

Unicode 2.0 (1996) — 21bit

Why a 21 bit code, though®

 Unicode 1.x was a 16-bit code
* Not enough to store everything
* Needed to have additional ‘planes’

* Plane O: "Basic Multilingual Plane”™ was most of 1.x

* Plane 1: “Supplemental Multilingual Plane” added
* Emojl
* Egyptian Hieroglyphs
* (Graphics characters such as dominoes and playing cards

 Plane 2 .. 16: "Supplementary planes” of various types

Still doesn’t explain 21 bit

To represent additional planes requires encoding

Two main Unicode encodings are widely used
e UTF-8
e UTF-16 (formerly UCS-2)

Unicode Transformation Format says how to encode point
» Logical code point for € is U+20AC

 May be written out in different ways
e Ox20 OxAC
« OxAC 0x20

UTF-16 uses 2 octets (16-bits) to represent content

UTF-8 uses octets (bytes/8-bit) to represent content

UTF-16

« UTF-16 uses two octets to represent content

e Can be ‘big endian’ or ‘little endian’
« Ox20 OxAC is ‘big endian’
o OXAC 0x20 is ‘little endian’
* Byte Order Mark (BOM OxFE OxFF) often written out at front
o OXFE OxFF - "big endian UTF-16 BOM’ — py in [SO-8859-1
o OxFF OxFE - ‘little endian UTF-16 BOM’ — yp in ISO-8859-1

e Still only 16 bit — how are planes 1..16 represented”?
e Surrogate pairs allow encoding 20 bits worth of data in 4 octets
« High surrogate pair (10 bits)
« Low surrogate pair (10 bits)

But 10 + 10 !'=21 ...

* No, but there’s no need to use them for plane 0 (BMP)

e S0, take away 1 and you have planes 0..15 which is 4 bits
e 4 bits + 16 bits (65536 in each plane) = 20 bits

 Consider 7 o’clock symbol @

« U+1F556 (The leading 1 indicates it is in plane 1)
 Plane 1 is encoded as

e F5 IS

e 50 IS

e UTF-16 for U+1F556 is
¢ 110110 == 0xD83D

« 110111 == 0xDD5A

UTF-8 stores 21 bits In 4 octets

« UTF-8is a variable length encoding
o ASCII bytes (<= 127, <= U+007F) are encoded as one octet
* U+0080..U+07FF are encoded as two octets
* U+0800..U+FFFF are encoded as three octets
* U+10000..U+1FFFFF are encoded as four octets

e Single octets

* Always start with a 0

Designed by Ken
e Multi octets Thompson and Rob

e Start with 11 Hle
e Continuation octet starts with 10

UTF-8 examples

* U+0041A i»¢, is the UTF-8 encoded UTF-16 byte order mark

e 0x41
Doesn't make sense

« U+1F556 @
e U+1is
e F51s
* 50 IS
e Encoded as 4 octets 0xF09F9596

e 11110 == 0xFO0
e 10 == 0x9F

Generated by Windows

The number of bits In
10 == 0x35 the first part shows number
e 10 == 0x96 of bytes in code

Flags of all nations

 How are flags represented? 38 =
* Extensible way without adding new data

* Regional indicator symbols A ... £

G B> U+1F1EC U+1F1E7

Symbols replaced with
flag as standard font
igatures

EU & U+1F1EA U+1F1FA

US = U+1F1FA U+1F1F8

UTF-8: Ox-F09F 8/BA FO9F 8788
UTF-10: OxFE FF D83C DDFA D83C DDFS8

Unicode: a 21-bit code point

 Expanded from 16 bits with 1.x to 21 bits with 2.x

 Encodings for UTF-8 provide a way to store 21 bits
e Can scan through string to count code points
e Octets starting with O or 11 are start of character

e Octets starting with 10 are continuation characters
e Self synchronizing

* Encodings for UTF-16 use surrogate pairs
e Surrogate pairs can store 20 bits of data
* Define plane O to not use surrogate pairs and this gives 21

* Evolving over the last 200 years ...

A brief history of
Unicode

¥ happens
Alex Blewitt
@alblue

Copyright (¢c) 2016, Alex Blewitt

