
A brief history of
Unicode

😊 happens
Alex Blewitt

@alblue

Copyright (c) 2016, Alex Blewitt

What is Unicode?
• Unicode is an industry standard for representing text

• Defines a number of code points that map to characters
• Not all characters are visible (control characters)
• Not all characters are standalone (accents)
• Not all code points refer to characters (some are undefined)
• Does include all major ideographs from a variety of languages
• U+0041 == ‘A’, U+20AC == ‘€’

• Pop quiz: what size are Unicode code points?
• 8-bit
• 16-bit
• 32-bit

Unicode: a 21-bit code point
• All characters in Unicode are logically 21-bits wide

• Not a great format for encoding data in computers!
• How did we end up with a 21-bit character set?

• To explain that, we have to look backwards in time …

• Before Unicode …
• Many variations of character sets with different meanings
• Single-byte

• ISO-8859-1 (CP-1252), ISO-8859-2, … ISO-8859-9
• ASCII, EBCDIC

• Multi-byte
• ISO-2202-CN, ISO-2202-JP, ISO-2202-KR (CJK)

What does all of this mean?
• Character sets and code pages assigned meanings

• 0x41 = ‘A’
• 0xD0 = ?

• ISO-8859-1 = ‘Ð’
• ISO-8859-3 = <missing>
• ISO-8859-9 = ‘Ğ’
• EBCDIC = ‘}’

• All based on ASCII (well, except EBCDIC …)

• Pop quiz: what size are ASCII code points?
• 8-bit
• 16-bit
• 32-bit

ASCII is a 7-bit code point
• Who needs power-of-two?

• American Standard Code for Information Interchange
• Defined to harmonise existing incompatible encodings

• ASCII was the Unicode of the telegraph era

• First 128 characters of ASCII are same as
• Unicode
• ISO-8859-1 (aka Latin-1)
• CP1252 (Windows)
• …

• Where did ASCII come from?

ASCII

Control Punctuation

Upper Lower

http://en.wikipedia.org/wiki/ASCII#/media/File:ASCII_Code_Chart-Quick_ref_card.png

Numbers

ASCII control characters
• Many are now obsolete but stem from telegraph days

• XML disallows control characters other than CR, LF, HT

• Some were used for printer control mechanisms
• HT/VT – horizontal or vertical tab (^I/^K)
• LF/FF – line feed/form feed (^J/^L)
• CR – carriage return (^M)

• Some are used for notification
• BEL – ring the bell (^G is beep in Unix terminals)

• Some were used for notification
• ACK/NAK/STX/ETX/SYN
• ESC/NUL

Telegraphs and teletypes
• Telegraphs revolutionised communication

• Characters sent as an electric encoding of bits
• Various encoding supported characters
• Needed standardisation …

• Teletype printers would print out punched paper tapes
• Paper tapes could be optically read
• /dev/tty in Unix stands for ‘teletype’
• /dev/ttyS1 stands for ‘teletype on serial port 1’

• Punched cards and tapes were common

Colossus computer

http://en.wikipedia.org/wiki/Colossus_computer

Used to crack codes from the Lorenz
telegraph with paper tape

Baudot, Murray and ITA2
• Baudot created first fixed length 5-bit encoding

• Also gave name to ‘baud’ as symbols-per-second
(not bits)

• Became known as ITA1
• Created ~ 1870

• Murray encoding created ~ 1900
• Modified patterns to minimise wear on punches
• Defined NUL as 0, introduced CR and LF, Backspace
• Evolved to ITA2 ~ 1930

Baudot, Murray and ITA2
• Baudot created first fixed length 5-bit encoding

• Also gave name to ‘baud’ as symbols-per-second
(not bits)

• Became known as ITA1
• Created ~ 1870

• Murray encoding created ~ 1900
• Modified patterns to minimise wear on punches
• Defined NUL as 0, introduced CR and LF, Backspace
• Evolved to ITA2 ~ 1930

← Sprocket drive holes

http://en.wikipedia.org/wiki/Baudot_code

Shifting in Baudot code
• The astute of you will notice 5 bits isn’t enough

• 26 letters + 10 digits > 2^5 (32)

• This was solved with the idea of a shift
• Based on idea of typewriters
• Meant that decoding was based on state

• Letter mode – Hello World
• Figures mode – £3))9 294)  
 
 
 

Morse Code
• Morse code is a variable length encoding

• Dots or dashes to represent characters
• Initial encoding for radio with human operators
• Invented in ~1840

• Practical for humans to hear and decode / send 
 
 -.. .-.. ---

.-- --- .-. .-.. -..

eH l l o

oW r l d

Punched Cards
• Punched tape itself was an evolution of cards

• Each card represented a ‘line’, each column a letter
• Created by Herman Hollerith (IBM founder)

http://en.wikipedia.org/wiki/Punched_card

Punched Cards
• Punched tape itself was an evolution of cards

• Each card represented a ‘line’, each column a letter
• Created by Herman Hollerith (IBM founder)

http://en.wikipedia.org/wiki/Punched_card
http://en.wikipedia.org/wiki/Silver_certificate_(United_States)

When were punched cards
used?

• When were punched cards first used?
• 1960
• 1950
• 1940
• 1930
• 1920
• 1910
• …

Jaquard Loom
1800

US Census
1890

Punched cards legacy
• Legacy of punched cards still with us

• Cards were 80 columns wide
• Led to early terminals having an 80 col display
• Some IDEs and text editors have a wrap at 80

• 8 characters were often used for numbering
• Fortran ignored characters in columns 73-80
• Some text editors will wrap /warn after column 72
• Git commit messages should be wrapped at 72

Punched cards and line
numbers

• Dropping a stack of cards was an expensive
operation …
• Radix sort of columns 73-80 can be used to fix
• Or just put a diagonal line through them …

EBCDIC
• EBCDIC is the Extended BCD Interchange Code

• BCD is Binary Coded Decimal, e.g. 0x12 is 12 decimal

http://www.columbia.edu/cu/computinghistory/

0-
9

in
 B

C
D

 is
 0

00
0.

.1
01

0

EBCDIC
0-

9
in

 B
C

D
 is

 0
00

0.
.1

01
0

http://ferretronix.com/march/computer_cards/ebcdic_table.jpg

EBCDIC challenges
• Not all was well with the EBCDIC character set

• Rarely used outside of IBM mainframes
• Different sort ordering to ASCII

• ASCII has 0-9, A-Z, a-z
• EBCDIC has a-z, A-Z, 0-9 (and not contiguous; ‘a’-‘z’ != 25)

• Created around same time (1963)
• IBM’s mainframes had peripherals using punched cards
• Easier to translate punched cards into EBCDIC
• Mainframes could be switched into ASCII but programs

failed
• Shares similar control characters to ASCII

• Form Feed, Tab, Escape …

Putting history together
Morse Code (1840)

Baudot Code (1870)

Murray/ITA2 (1900)

ASCII (1963)

Fortran (1960)

ISO-8859-* (1985)

Unicode 1.0 (1991) – 16 bit

Unicode 2.0 (1996) – 21bit

Jacquard Loom (1800)

Hollerith Card (1890)

EBCDIC (1963)

Telegraph Automation

Computing

Why a 21 bit code, though?
• Unicode 1.x was a 16-bit code

• Not enough to store everything
• Needed to have additional ‘planes’

• Plane 0: “Basic Multilingual Plane” was most of 1.x

• Plane 1: “Supplemental Multilingual Plane” added
• Emoji
• Egyptian Hieroglyphs
• Graphics characters such as dominoes and playing cards

• Plane 2 .. 16: “Supplementary planes” of various types

Still doesn’t explain 21 bit
• To represent additional planes requires encoding

• Two main Unicode encodings are widely used
• UTF-8
• UTF-16 (formerly UCS-2)

• Unicode Transformation Format says how to encode point
• Logical code point for € is U+20AC
• May be written out in different ways

• 0x20 0xAC
• 0xAC 0x20

• UTF-16 uses 2 octets (16-bits) to represent content

• UTF-8 uses octets (bytes/8-bit) to represent content

UTF-16
• UTF-16 uses two octets to represent content

• Can be ‘big endian’ or ‘little endian’
• 0x20 0xAC is ‘big endian’
• 0xAC 0x20 is ‘little endian’

• Byte Order Mark (BOM 0xFE 0xFF) often written out at front
• 0xFE 0xFF – ‘big endian UTF-16 BOM’ – þÿ in ISO-8859-1
• 0xFF 0xFE – ‘little endian UTF-16 BOM’ – ÿþ in ISO-8859-1

• Still only 16 bit – how are planes 1..16 represented?
• Surrogate pairs allow encoding 20 bits worth of data in 4 octets
• High surrogate pair (10 bits)
• Low surrogate pair (10 bits)

But 10 + 10 != 21 …
• No, but there’s no need to use them for plane 0 (BMP)

• So, take away 1 and you have planes 0..15 which is 4 bits
• 4 bits + 16 bits (65536 in each plane) = 20 bits

• Consider 7 o’clock symbol 🕖
• U+1F556 (The leading 1 indicates it is in plane 1)
• Plane 1 is encoded as 0000
• F5 is 1111 0101
• 56 is 0101 0110

• UTF-16 for U+1F556 is
• 110110 0000 1111 01 == 0xD83D
• 110111 01 0101 0110 == 0xDD5A

UTF-8 stores 21 bits in 4 octets

• UTF-8 is a variable length encoding
• ASCII bytes (<= 127, <= U+007F) are encoded as one octet
• U+0080..U+07FF are encoded as two octets
• U+0800..U+FFFF are encoded as three octets
• U+10000..U+1FFFFF are encoded as four octets

• Single octets
• Always start with a 0

• Multi octets
• Start with 11
• Continuation octet starts with 10

Designed by Ken
Thompson and Rob

Pike

UTF-8 examples
• U+0041 A

• 0x41

• U+1F556 🕖
• U+1 is 00001
• F5 is 1111 0101
• 56 is 0101 0110
• Encoded as 4 octets 0xF09F9596

• 11110 000 == 0xF0
• 10 01 1111 == 0x9F
• 10 0101 01 == 0x95
• 10 010110 == 0x96

ï»¿ is the UTF-8 encoded UTF-16 byte order mark

Doesn't make sense

Generated by Windows

The number of bits in
the first part shows number

of bytes in code

Flags of all nations
• How are flags represented? #$%

• Extensible way without adding new data

• Regional indicator symbols A … Z

G B # U+1F1EC U+1F1E7

E U $ U+1F1EA U+1F1FA

U S % U+1F1FA U+1F1F8

Symbols replaced with
flag as standard font

ligatures

UTF-8: 0xF09F 87BA F09F 87B8
UTF-16: 0xFE FF D83C DDFA D83C DDF8

Unicode: a 21-bit code point
• Expanded from 16 bits with 1.x to 21 bits with 2.x

• Encodings for UTF-8 provide a way to store 21 bits
• Can scan through string to count code points
• Octets starting with 0 or 11 are start of character
• Octets starting with 10 are continuation characters
• Self synchronizing

• Encodings for UTF-16 use surrogate pairs
• Surrogate pairs can store 20 bits of data
• Define plane 0 to not use surrogate pairs and this gives 21

• Evolving over the last 200 years …

A brief history of
Unicode

🏁 happens
Alex Blewitt

@alblue

Copyright (c) 2016, Alex Blewitt

