The Ghosts of Java s
Past, Present ‘
and Yet To Come

Steve Elliott
Oracle UK
8t December 2015 s

& i
i Tewas,

3 e

- vv' ’1 . 2 ; > ; ',z ;-
€5 N SO A - NG
v

Ghe following & intended to outline our general product direction. S is
contract. Iy i not @ commitment lo. deliver any material, eods, or
Sfnationality, and should not be relied upon in making purdhasing dectsions.
T devdlopment, relose, and timing of any features ox fundlionalily, deseribed
for Orale s produets remains as the sole disoretion of Orac. P

s

B < Java

“It held a branch of fresh green holly in its hand...

But the strangest thing about it was, that from the crown
of its head there sprung a bright clear jet of light, by which
all this was visible; and which was doubtless the occasion
of its using, in its duller moments, a great extinguisher for
a cap, which it now held under its arm.”

£, Java | o
= oR Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

istory is the prediction of the
present. Historians explain why
things turned out the way they
did. Since we already know the outcome,
this might seem a simple matter of
looking back and connecting the dots. But
there is a problem: too many dots. Even

the dots have dots. Predicting the present
is nearly as hard as predicting the future.

http://www.newyorker.com/magazine/2015/03/30/thinking-sideways

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 4

Star7; Under the Cover '

®MicroSPARC chipset
©200Kbps RF link
®Sharp TV screen _
®Touchscreen o
®PCMCIA
®4Meg RAM
®Flexible board

- ®IR link

A

)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

'-nu-.--vqrpl. »

o0 e R e 1 1
Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

e - ——

N cew epocem e amrs

L A R T LRt I

AR R R L R R L T IR R AT Rl L

P& IN0
ECT=

EN

mc%f."

Sogen

1] '
14 g ub

* Dynamically Threaded, 1-8 threads / core

e Concurrent Memory Migration, VA Masking
e Dual Issue OOO execution unit

e 64 Mb L3

e 256K L2 per core cluster

* Crypto acceleration

s taces i ™ i ridiy

CC g AN Ik g &

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

(some) Influences on Java
(née GreenTalk/Oak)

Simula Modula Self (Hotspot) Ceylon
Algol 5 C cheme VB Groovy Kotlin
BCPL N Python Scala
occam Haskell Clojure
Coral PL/M Ruby Swift
LISP Smalltalk Al LiveScript/JavaScript TypeScript
PHP G y
BASIC Pascal (p-code) —— Java 0
Forth Mesa Cedar Perl Fantom
Fortran Objective C Dart

>

57585960 61626364656667686970717273747576777879 80 818283 848586878389 90 919293949596979899 00 010203 040506070809101112131415
http://en.wikipedia.org/wiki/Timeline_of programming_languages

p http://hopl.murdoch.edu.au/
¢, Java
— Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

BCPL

forthe BBC Microcomputer

ACORNSAFT LANGUAGES

LISP

forthe BBC Microcomputer Models Aand B

e

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

10

(some) Influences on Java
(née GreenTalk/Oak)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 11

-

LISP

Fortranﬂ

Ole-Johan Dahl
Kristen Nygaard

Simula

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

12

The Ghost in the
(Java Virtual)
Machine

(some) JVMs & GC Collectors

* Oracle
— HotSpot Serial[Old], Parallel[Old],CMS RIGE, G1
Shenendoah (OpenlJDK JEP 189)
— JRockit MSC gen/par/com JRockit Real Time
* IBM
—J9 thruput, avgpause, gencon Balanced, Metronome
* Azul
—Zing C4 (née GPGC)

* Jikes (IBM), Maxine (Sun), Squawk (Sun, JavaME-SunSpots), Monty, KVM...

https://en.wikipedia.org/wiki/List _of Java_virtual_machines

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Hotspot Collectors

Parallel
Old

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

-XX:+UseSerialGC
-XX:+UseParallelGC
-XX:+UseParallelOIldGC
-XX:+UseConcMarkSweepGC
-XX:+UseParNewGC
-XX:+UseG1GC

CAUTION:

Self

STRONGTALK

Made with secret
alien technology

Smalltalk... with a need for speed

http://www.strongtalk.org/history.html

mark-sweep garbage collection
[McCarthy, 1960]

O-code P J,SE,F,L “Most objects die young”

(BCPL g v e David Ungar - 1984

Richards) P_code

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Multiprocessing compactifying garbage collection
Full Text: TIPDF

Author: Guy L. Steele, Jr. Harvard Univ., Cambridge, MA

Published in:
- Magazine
Communications of the ACM CACM Homepage archive

Volume 18 Issue 9, Sept. 1975
Pages 495-508

ACM New York, NY, USA

table of contents dOi>10.1145/361002.361005

@ 1975 Article

—d Bibliometrics

- Downloads (6 Weeks): 4

- Downloads (12 Months): 40

- Downloads (cumulative): 779
- Citation Count: 115

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

17

A brief history of (some) Java Virtual Machines...

VM for Oak (1992 — Gosling)
Sun JDK : Alpha/Beta (1995), 1.0 (1996)

JIT added in 1.1 (1997)
Cliff Click (later worked on C2 server Compiler)

Sun acquires Animorphic (1997)

David Ungar, Lars Bak, Urs Holzle... (Self) « Appeal Virtual Machines — Stockholm (1998)
+ David Griswold, Gilad Bracha... (Strongtalk) Marcus Hirt, Marcus Lagergren...

HotSpot released (1999) Acquired by BEA (2002)
add on for 1.2, defaultin 1.3 _
BEA Acquired by Oracle (2008)

CMS _
Printezis/Detlefs (2000) * Dynamic GC
G1 « Deterministic GC (~2005) — JRRT

Eva Andreasson
JRockit Mission Control (~2007)

Printezis/Flood/Heller (2004)

RTGC / Java RTS (2009) [not active]

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

A brief history of Java Virtual Machines (contd)

« IBM Hursley - Java Technology Center (1996)

* Azul (2002) . J9 - IBM Ottowa Labs (OTI) 1.4 (2003)
Sellers/Tene/Pillalamarri IBM Toronto Labs

* Stephen DeWitt + ex Sun (2004) « Metronome RT collector (2003)

- Vega (2004) Balanced Collector (2011)

Zing 5 (2010) software only
C4 Collector

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Java™ On Steroids:
Sun’s High-Performance
Java Implementation

Urs Holzle
Lars Bak Steffen Grarup

ﬁg Robert Griesemer Srdjan Mitrovic

JANA .
Sun Microsystems

e
&
N

v/. "
Z
f 4

JAvA

History

* First Java implementations:
interpreters
-~ compact and portable but slow
* Second Generation: JITs
- still too slow
— long startup pauses (compilation)
* Third Generation: Beyond JITs

~ improve both compile & execution time

S, Javar

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

‘hea EBo=is

Think liquid.

Design Rationales in the JRockit JVM

Marcus Lagergren

Java Language team, Oracle

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

22

HotSpot / G1

* Permgen removal
* Density
* JIT Compilers (C1/C2 Tiered Compilation)

* GCimprovements / G1 / Rationalisation

* Ergonomics

* Instrumentation / Tuning / Performance

* Cloud — Multi-Tenancy. Isolation / Resource Management.

e AOT Compilation (https://www.youtube.com/watch?v=Xybzyv8gbOc)

* Deterministic GC / Low Latency

£, Java | o
— on Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Concurrency / Threads / Java Memory Model

BRIAN GOETZ

WITH Tim PEIERLS, JOSHUA BLOCH,
Joserx BowBEER, DAVIO HOLMES, ‘
AND DOUG LEA

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

% Monitors

* From Mesa/Cedar, C.F. Hoare
Allows thread re-entry

* One per object with synchronized
methods

» Usage automated through
synchronized keyword

— synchronized methods or blocks

Copyright © 2015, Oracle and/or its affiliates. All rights reserve

d.

25

Concurrency in Java Project Lambda

Fork/Join Framework @

{J?s\/r?l. géi)l.concu rrent (jsr166y)

Phasers, etc TO—
java.lang.Thread (isr166) —<r< 1O~ j:;)>%
! o

T
e 50 6 7 8

2002 2003 2004 2005 2006 2007 2008 2009 201020112012 2013 2014

S, Java | o
= ' crace Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

. Parallelism: Streams and Spliterators

* Java is becoming somewhat more functional in style
* Guess what: so are a lot of other languages

* There seems to be a sort of convergence happening,
a consensus on how represent and process collections

* Not surprising: avoiding side effects Guy Steele
+ Surprising: use of higher-order functions and lambdas JVM Language Summit 2013
* Java dragged a lot of C programmers halfway to Lisp
* Killer feature: garbage collection (memory)
* Maybe now it will drag them halfway to Haskell?
* Killer feature: automatic parallelism (processors)
* Hurray for JDK8!

ORACLE

S, Java | o
= ' crace Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

ORACLE = To serve its purpose, the memory model only needs to answer
one simple question:

What values can a particular read in the program return?

Intro: Memory Model is a Trade-Off
Java Memory Model

...and the pragmatics of it

How hard it is to use a language?
VS.
How hard it is to build a language implementation?
VS.
How hard it is to build appropriate hardware?

Aleksey Shipilev
aleksey.shipilev@oracle.com, @shipilev

= Sweet new language X can offer tons of juicy features, but will
the humanity spend another million years trying to build the
high-performance and conforming implementation of it?

http://shipilev.net/talks/narnia-2555-jmm-pragmatics-en.pdf
https://www.youtube.com/watch?v=TxgsKzxyySo (VJUG)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

JavaOne

Sun's 2000 Worldwide Java Developer Conference’

Correct and Efficient
Synchronization of
Java™ Technology-
based Threads

Doug Lea and William Pugh
http://gee.cs.oswego.edu
http://www.cs.umd.edu/~pugh

Thread 1

Thread 2

B=1;

A = 2;

r2

Il
b

rl

Il
o
-

Since there is no synchronization, each read can see either the write of the initial value
or the write by the other thread. An execution order that displays this behavior is:

l1: B
3: A=

4: rl = B;

1;
23

2: r2 = A; // sees initial write of 0
// sees initial write of 0

Another execution order that is happens-before consistent is:

: r2 = A; // sees write of A =
B;

// sees write of B

]
[

In this execution, the reads see writes that occur later in the execution order. This may
seem counterintuitive, but is allowed by happens-before consistency. Allowing reads to
see later writes can sometimes produce unacceptable behaviors.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

30

JSR 133 (Java Memory Model) FAQ

Jeremy Manson and Brian Goetz, February 2004
Table of Contents

What is a memory model, anyway?

er languages, like C++, hav emory model?
What is JSR 133 about?
What is meant by reordering?
What was wrong with Id m y model?
W n by in ly synchronized?
What does synchronization do?
How can final ficlds appear to change their values?
How do final ficlds work under the new JMM?

What does volatile do?

s the new ! :] fi heck ki lem?
wni a VM?

Ei

What is a memory model, anyway?

In multiprocessor systems, processors generally have one or more layers of memory cache, which improves performance both by speeding access to data (because the data is closer to the
processor) and reducing traffic on the shared memory bus (because many memory operations can be satisfied by local caches.) Memory caches can improve performance tremendously, but
they present a host of new challenges. What, for example, happens when two processors examine the same memory location at the same time? Under what conditions will they see the same
value?

At the processor level, a memory model defines necessary and sufficient conditions for knowing that writes to memory by other processors are visible to the current processor, and writes by
the current processor are visible to other processors. Some processors exhibit a strong memory model, where all processors see exactly the same value for any given memory location at all
times. Other processors exhibit a weaker memory model, where special instructions, called memory barriers, are required to flush or invalidate the local processor cache in order to see writes
made by other processors or make writes by this processor visible to others. These memory barriers are usually performed when lock and unlock actions are taken; they are invisible to
programmers in a high level language.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 31

JEP 188: Java Memory Model Update

JEP 193: Variable Handles

Owner Doug Lea Author Doug Lea
Created 2013/12/16 20:00 Owner Paul Sandoz
Updated 2014/08/18 10:40 Created 2014/01/06 20:00
Type Informational Updated 2015/07/23 22:32
Status Draft Type Feature
Scope DK Status Ergefed
Component core-libs
JSR TBD Scope SE
Discussion jmm dash dev at openjdk dot java dot net JSR TBD
Eff?’t M Discussion core dash libs dash dev at openjdk dot java dot net
Duration XL Effort M
Priority 4 Duration L
Endorsed by Brian Goetz Priority 2
Issue 8046178 Reviewed by Dave Dice, Paul Sandoz
Blocks JEP 193: Variable Handles Endorsed by Brian Goetz
Release 9
Summary Issue 8046183
This JEP serves to provide information and guidance for efforts bearing on shared- Depends JEP 188: Java Memory Model Update
memory concurrency, including those on Java SE specification updates, JVM Summary

concurrency support, JDK components, testing, and tools. Engineering and release
efforts in these areas will be subject to other JEPs, that will in turn become
components of one or more JSRs targetted for a major release. In particular, Java
Language Specification (chapter 17) updates require such a JSR.

Define a standard means to invoke the equivalents of
java.util.concurrent.atomic and sun.misc.Unsafe operations upon object
fields and array elements.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 32

I n Development Architecture Data Science Culture &
En |3 | 8% | Fr|Br & Design Methods

Mobile HTMLS JavaScript APM NET Cloud Java DevOps All topics

You are here: InfoQ Homepage » Articles » 71 Opon 0K Revised Juva M

The OpenJDK Revised Java Memory Model

Posted by Monica Beckwith on May 31,2015| 3 Discuss

e @ IA@&DS MO

The traditional Java Memory Model covers a lot in Java language semantic guarantees. In this
article we will highlight a few of those semantics and provide a deeper understanding of them. We
will also attempt to communicate the motivation for an update to the existing Java Memory Model
(JMM) with respect to the semantics described in this article. Discussion related to this future
update to JMM will be referred to as JMM9 in this article.

Java Memory Model

The existing Java Memory Model, as was defined in JSR 133 (henceforth referred to as
JMM-JSR133) specifies consistency models for shared memory and also helps provide definitions

for developers so that they can be consistent in representing the JMM-JSR133. The goal of the
AMM. ISR 1313 ananificatinn was tn ansurn that the definitinn of the samantics for threacds

http://www.infog.com/articles/The-OpenJDK9-Revised-Java-Memory-Model

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

JVM Language Summit 2015
VarHandles (nee enhanced volatiles)

(Paul Sandoz video from August 11th 2015)
https://www.youtube.com/watch?v=ycKn18LtNtk

Variable handles

http://openjdk.java.net/jeps/193
h . nidk.java.n row

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Security

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Local Code Remote Code

] | |

Sandbox Restricted
JVM FU“ @ Access .
Access

to Resources 2" ﬂmg()h

Security Manager

Local Trusted Remote Code
System Resources . Code 5 Signed
(files,network s < ' N A| Code
connections, etc) - : ‘ ' l

JVM Full v Sandbg:cigssmcted
Access ‘ ~
to Resources 2" m ‘0 —
‘ Local or
Remote Code = @ Security Policy

Security Manager

System Resources A N -
(files,network "B VN
connections, etc) - >

. N N N 0
Sandbox
Access ng ' Restricted

to Resources Access

domain g lmg()”

System Resources
(files,network
connections, etc)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Article development led by (L0202
QuUeUe.aCM.org

Difficult technical problems and
tough business challenges.

BY LI GONG

Java Security
Architecture
Revisited

THE JAVA PLATFORM JDK 1.0 was released in 1995 with a
simplistic all-or-nothing “sandbox” security model. Li
Gong joined the JavaSoft division of Sun Microsystems
in 1996 and led the redesign of the security architecture
that was first released in 1998 as JDK 1.2 and is now
deployed on numerous systems and devices from the
desktop to enterprise and mobile versions of Java.

This article looks back at a few of the most difficult
technical problems from a design and engineering
nerenective ac well ac ecame tonoh hncinece

Although security architects are not
“in business,” it is important that they
are clearabout who theircustomersare,
They rarely build directly for individual
end users, who do not directly use the
operating system, although they are of-
ten the eventual beneficiaries.

Most of the work of a security archi-
tect is targeted at application program-
mers, and Java is no exception. Here
the design goal is to help programmers
getwhatis intended out of their code—
more specifically, to make the most
common cases the easiest to write and
get right, and to reduce the risk of cod-
ing mistakes or bugs. As such, the four
attributes of the Java security architec-
ture’ should generally apply:

» Usability. To be ubiquitous and
accepted in the marketplace, the ar-
chitecture must be easy to use and
suitable for writing a wide variety of ap-
plications.

» Simplicity. To inspire confidence
in the correctness of the architecture, it
must be easy to understand the critical
design properties and to analyze the
implementation.

» Adequacy. The architecture must
contain all essential features and
building blocks for supporting higher-
level security requirements.

» Adaptability. The design must
evolve with ease, following demand
and market reality. In particular, it
should avoid overprescribing that re-
stricts programmability.

In hindsight, having these guid-
ing principles in place was crucial.
In the oririnal IDK 1.0. the securitv

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

37

Java Security

* Java Language Security and Bytecode Verification

* Security APIs and Libraries
— Cryptography: JCA/JCE
— Public-Key Infrastructure (PKIl): Certificates, CertPaths
— Authentication: JAAS, Kerberos
— Secure Communication: JSSE (SSL/TLS), GSS-API, SASL
— Access Control: Security Manager, Policy, JAAS
— XML Signature

* Tools: jarsigner, keytool

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Asset: Java Runtime. Concern: Work on upgrade.

S P

Find where your code and dependencies
use undocumented internal APlIs.

Change to supported APIs.

https://wiki.openjdk.java.net/display/JDK8/Java+
Dependency+Analysis+Tool

| Maybe upgrade some libraries.

https://wiki.openjdk.java.net/display/quality/Quality+Outreach

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Asset: Java Runtime. Concern: Client technology.
Web Start and/or Applet

Most JavaOne attendees are probably
writing server applications and not
using this anyways.

If you use the Server JRE, it’s not even
there.

Or just turn it off in
the control panel. —-

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

If you do use client: Deployment Rule Set

* Security of current JRE, compatibility with older versions.

* Can control dialogs.
* Can default-block.

Application A
Application B \

\>

Latest Java version
with Deployment

Rule Set

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Reduce Attack Surface: Compact Profiles (JDK 8) and Jigsaw (JDK 9, future)

* Asset: My application / runtime.
* Threat: Unknown future risk.
* Mitigation: Remove unused pieces.

* Difficulty: Removing things you do need breaks your own program.

JDK 8 (embedded):

Regular JRE: See conceptual diagram. About 163MB.

Compact 3: Remove graphics, CORBA, and sound. About 21MB.
Compact 2: No Kerberos and JMX monitoring. About 15MB.
Compact 1: No JDBC and XML. About 11MB.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

JDK 9 Security Features
http://openjdk.java.net/jeps/0

* JEP 219: Datagram Transport Layer ¢ JEP 246: Leverage CPU Instructions
Security (DTLS) for GHASH and RSA

* JEP 229: Create PKCS12 Keystores * JEP 249: OCSP Stapling for TLS

by Default * JEP 273: DRBG-Based

* JEP 232: Improve Secure SecureRandom Implementations
Application Performance

* JEP 244: TLS Application-Layer
Protocol Negotiation Extension

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Distributed Java

The Eight Fallacies of
Distributed Computing

Peter Deutsch

Essentially everyone, when they first build a distributed application, makes
the following eight assumptions. All prove to be false in the long run and
all cause big trouble and painful learning experiences.

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology doesn't change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

c 1994 (via James Gosling’s old blog)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

MQQT/COAP

-~ RMI-1IOP rroiece XMPP etc
(O 0P A JXT
&mﬁw (1996) .
1991) w
| RMI -
(1996)
DCOM |
(1996) (2014)

(1991)

Pl

Web Services

(Slg Sep Y;/g?i)ockets
REST
SSL / TLS (2000 - http1.1 1996-1999)

(1995)" (1999)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

45

« #1 Development Platform,

2
Java:
——— *'"‘ \t':—
——z oy '
- - ‘ﬁ\ / _;,';"“"
:‘) J] Do L

#lava2(

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Roadmap Update

Updated version post talk on 8% Dec.

http://mail.openjdk.java.net/pipermail/jdk9-dev/2015-December/003237.html

(2016/05/26 Feature Complete)
2016/08/11 All Tests Run
2016/09/01 Rampdown Start
2016/10/20 Zero Bug Bounce
2016/12/01 Rampdown Phase 2
2017/01/26 Final Release Candidate
(2017/03/23 General Availability)

http://openjdk.java.net/projects/jdk9
https://wiki.openjdk.java.net/display/Adoption/JDK+9+Qutreach

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

JDK 9 release schedule

mark.reinhold at oracle.com mark.reinhold at oracle com
Wed Dec 9 23:11:56 UTC 2015

« Previous message: Proposed schedule change for JDK 9
» Next message: jdk9-b95: dev
+ Messages sorted by: [date] [thread] [subject | [author |

2015/12/1 9:08 -0800, mark.reinhold at oracle.com:

For these reasons I hereby propose a six-month extension of the JDK 9
schedule, moving the Feature Complete (FC) milestone to 25 May 2016, the
General Availability (GA) milestone to 23 March 2017, and adjusting the
interim milestones accordingly.

Comments on this proposal from JDK 9 Committers are welcome, as are
reasoned objections. If no such objections are raised by 18:00 UTC next
Tuesday, 8 December, or if they're raised and satisfactorily answered,
then per the JEP 2.0 process proposal [8)] this will be adopted as the
new schedule for JDK 9.

VVVVVVVVVVYVYVYYVYYVYY

Hearing no objections, I've recorded the new FC and GA dates on the
JDK 9 Project page [1). (The FC date has been rounded up to 2016/5/26
s0 that all milestones fall on Thursdays, as usual.)

Here are the proposed dates for the interim milestones:

(2016/05/26 Feature Complete)
2016/08/11 All Tests Run
2016/09/01 Rampdown Start
2016/10/20 Zero Bug Bounce
2016/12/01 Rampdown Phase 2
2017/01/26 Final Release Candidate
(2017/03/23 General Availability)

I didn't include the interim milestones in the initial proposal, so
I'1l leave them open for discussion under the same terms until 23:30
UTC next Wednesday, 16 December.

- Mark

49

Next Feature Release: JDK 9 — 2846-89-22 234 March 2016

Periodic security fixes and bug fixes for all releases until then

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul
2015 2016 2017

9 901 —» 002
Move out 6 months

913 —» 914

8u31 ——P Bud5 ——P BuS1 —P BuBS — P Bu71 —— BU75——P BuB1 — P BuB5S — Bud1 —» Bus5 —» Bu101
~ ¥ 8u66 8u72 8u76 8uB2 8uB6 8ug2 8u96 8u102
8u40 8u60

7u75 ——» 7u79
7u76 7uB0

Last reviewed on 2015/10 All future release dates subject to change

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

50

Current Releases — Support Period

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

Sep 2027

Move out 6 months

B v S T

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 51

Java
End of Public Updates (EoPU)

* Public Java updates are available until all three of these conditions occur

— Three years after general availability
— One year after being superseded by a new major release
— Six months after the new major release is made the default on java.com

S,)Java | o
= 'on Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Post Java 9

° Project Valhalla http://openjdk.java.net/projects/valhalla

* Value Types — aggregates without identity
http://cr.openjdk.java.net/~jrose/values/values-0.html

* Specialization — templated types on demand
http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html

* JMM Update — VarHandles

* Project Panama http://openjdk.java.net/projects/panama

* Arrays 2.0 — flexible array implementation and organization

* Layouts — flexible object layout
* FFI (JEP 191) — better native code interop

http://mail.openjdk.java.net/pipermail/valhalla-dev
http://mail.openjdk.java.net/pipermail/panama-dev

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

John Rose @ JVM language summit July 2014

http://www.oracle.com/technetwork/java/javase/community/jlssessions-2255337.html

- JVM pain points (from “Evolving the JVM”, JVMLS 2014)

Pain Point Tools & Workarounds Upgrade Possibilities

Names (method, type)
Invocation (mode, linkage)

Type definition
Application loading

Concurrency

(Im-)Mutability
Data layout

Native code libraries

12 | Copyright © 2015, Oracle andior its afilaies. All Aghes reserved. |

$ Java

mangling to Java identifiers unicode IDs v 1.5/JSR-202,
structured names

reflection, intf. adapters indy/MH/CS v 1.7/JSR-292,
tail-calls, basic blocks

static gen., class loaders specialization, value types

JARs & classes, JIT compiler Jigsaw, AOT compilation

threads, synchronized £ Streams v/ 1.8/JSR-335,
S Sumatra (GPU), fibers

final fields, array encap. % VarHandles, JMM, frozen data
O

objects, arrays 3C, Arrays 2.0, value types, FFI
o)

JNI @ Panama

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 54

- . What should the JVM look like in 20 years?

mpactors(o (eight not-so-modest goals)

filtes(! pm)oc‘.u any(slanguage))
forBach(l ~ Lhali(*
Hello lnn(um implementors!
i gust 10-12, 2018

y ¥ .= Uniform model: Objects, arrays, values, types, methods “feel similar”

= Memory efficient: tunable data layouts, naturally local, pointer-thrifty

= Optimizing: Shared code mechanically customized to each hot path

= Post-threaded: Routine confinement/immutability, granular concurrency
:2 1 = Interoperable: Robust integration with non-managed languages

" 77"« Broadly useful: Safely and reliably runs most modern languages.

= Compatible: Runs 30-year-old dusty JARs.

» Performant: Gets the most out of major CPUs and systems.

4 GLOZ'ZI-Ot WY /vy
J TeTUITe @IG S e

NG PenFUY] WNAP /T 0

XETY/ -~
o1gmYtoa 38
‘m.)“lmv "mio L& * ‘ =

G b eld Lo

57 | Copyright © 2015, Oracle andior its afiiates. AN fights resenved. | ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

®

Happy Holidays fm Oracle Technology Network

N e

ORACLE’

[TecHmoLoGY NETWORX

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

57

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

58

Acknowledgments & Links (1/2)
* Wikipedia

— https://en.wikipedia.org/wiki/File:Charles Dickens-A Christmas Carol-Title page-First _edition 1843.jpg
— https://en.wikipedia.org/wiki/File:The Last of the Spirits-John Leech, 1843.jpg

— https://en.wikipedia.org/wiki/File:TI_microSPARC | die.jpg

— https://en.wikipedia.org/wiki/File:Intel Pentium_P54C die.jpg

* JVM Language Summit

— http://openjdk.java.net/projects/mlvm/jvmlangsummit

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Acknowledgments & Links (2/2)

* Others

— Oracle M7 Presentation from HotChips 2014 / Stephen Philips
— Language Based Virtual Machines / Lars Bak http://aosd.net/2012/images/stories/bak.pdf
— Aleksey Shipilev http://shipilev.net/blog/2014/imm-pragmatics

— Oracle Java Documentation https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.htm!
— ACM Queue https://queue.acm.org/detail.cfm?id=2034639

— The Eight Fallacies of Distributed Computing / James Gosling (old) home page

— Roadmaps (OpenWorld 2015) / Aurelio Garcia-Ribeyro

https://published-rs.lanyonevents.com/published/oracleus2015/sessionsFiles/1467/CON9682 Garcia-
Ribeyro-CON9682-O0W2015-JavaSEAdvanced.pdf

— Threat-Modeling the JVM [CON2031] (JavaOne 2015) / Erik Costlow

— Duke images https://duke.kenai.com
Merry Christmas https://duke.kenai.com/animations/DukeTuxChristmas.gif

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

