

Aeron High-Performance Open Source Message Transport

Martin Thompson - @mjpt777

- 1. Why build another **Product?**
- 2. What Features are really needed?
- 3. How does one Design for this?
- 4. What did we Learn on the way?
- 5. What's the Roadmap?

1. Why build another product?

Not Invented Here!

There's a story here...

But many others could benefit

Feature Bloat & Complexity

Not Fast Enough

Low & Predictable Latency is key

We are in a new world

Multi-core, Multi-socket, Cloud...

We are in a new world

Multi-core, Multi-socket, Cloud...

UDP, IPC, InfiniBand, RDMA, PCI-e

2. What features are really needed?

Messaging

A library, not a framework, on which other abstractions and applications can be built

Composable Design

OSI layer 4 Transport for message oriented streams

OSI Layer 4 (Transport) Services

- 1. Connection Oriented Communication
- 2. Reliability
- 3. Flow Control
- 4. Congestion Avoidance/Control
- 5. Multiplexing

Connection Oriented Communication

Reliability

Flow Control

Congestion Avoidance/Control

Multiplexing

Multi-Everything World!

Multi-Everything World

Publishers

Subscribers

3. How does one design for this?

Design Principles

- 1. Garbage free in steady state running
- 2. Smart Batching in the message path
- 3. Lock-free algos in the message path
- 4. Non-blocking IO in the message path
- 5. No exceptional cases in message path
- 6. Apply the Single Writer Principle
- 7. Prefer unshared state
- 8. Avoid unnecessary data copies

1. System Architecture

- 1. System Architecture
- 2. Data Structures

- 1. System Architecture
- 2. Data Structures
- 3. Protocols of Interaction

Architecture

— IPC Log Buffer

Architecture

- IPC Log Buffer
- Media (UDP, InfiniBand, PCI-e 3.0)

Architecture

- IPC Log Buffer
- Media (UDP, InfiniBand, PCI-e 3.0)
- Function/Method Call
- Volatile Fields & Queues

Architecture

- IPC Log Buffer
- Media (UDP, InfiniBand, PCI-e 3.0)
- Function/Method Call
- Volatile Fields & Queues
- IPC Ring/Broadcast Buffer

Data Structures

- Maps
- IPC Ring Buffers
- IPC Broadcast Buffers
- ITC Queues
- Atomic Buffers
- Log Buffers

What Aeron does

Creates a replicated append-only log of messages

How would you design a log?

Append-only data structures can be safe to read without locks

One big file that goes on forever?

No!!!

Page faults, page cache churn, VM pressure, ...

You don't block publishers?

Message X

Message Y

Message X

Message Y

Header

Message 1

Header

Message 2

Header

Message 3

Message X

Message Y

Header

Message 1

Header

Message 2

Header

Message 3

Header

Message Y

Message X

Header

Message 1

Header

Message 2

Header

Message 3

Header

Message Y

Padding

Message X

What's in a header?

Data Message Header

Unique identification of a byte within each stream across time (streamId, sessionId, termId, termOffset)

How do we replicate a log?

We need a Protocol of messages

How to rebuild a message stream?

What if a gap is not filled?

How do we know what is consumed?

Publishers, Senders, Receivers, and Subscribers all keep position counters

Counters are the key to flow control and monitoring

Protocols can be more subtle than you think...

What about "Self similar behaviour"?

4. What did we learn on the way?

Monitoring and Debugging

Loss, throughput, and buffer size are all strongly related!!!

Know your OS network Pro Tip: parameters and how to tune them

Unsigned Types?

Unsigned Types?

NIO (most of) - Locks

Unsigned Types?

NIO (most of) - Locks

Off-heap, PAUSE, Signals, etc.

Unsigned Types?

NIO (most of) - Locks

Off-heap, PAUSE, Signals, etc.

String Encoding

Unsigned Types?

NIO (most of) - Locks

Off-heap, PAUSE, Signals, etc.

String Encoding

Managing External Resources

Unsigned Types?

NIO (most of) - Locks

Off-heap, PAUSE, Signals, etc.

String Encoding

Managing External Resources

Selectors - GC

Bytes!!!

```
public void main(final String[] args)
    byte a = 0b0000 0001;
    byte b = 0b0000 0010;
    byte flags = a | b;
    System.out.printf(
        "flags=%s\n",
        Integer.toBinaryString(flags));
```

Bytes!!!

```
public void main(final String[] args)
    byte a = 0b0000 0001;
    byte b = 0b0000 0010;
    byte flags = a | b;
    System.out.printf(
        "flags=%s\n",
        Integer.toBinaryString(flags));
```

```
a = 0b0000_0001;

Lyte b = 0b0000_0010;

byte flags = aa: incomparing into byte

System of Alpriony (

Error: Ragssys \n"

Error: Ragssys \n"

possible der. to
```

Tooling – IDEs, Gradle, HdrHistogram

Tooling – IDEs, Gradle, HdrHistogram

Profiling – Flight Recorder

Tooling – IDEs, Gradle, HdrHistogram
Profiling – Flight Recorder
Bytecode Instrumentation

Tooling — IDEs, Gradle, HdrHistogram

Profiling — Flight Recorder

Bytecode Instrumentation

Unsafe!!! + Java 8

Tooling – IDEs, Gradle, HdrHistogram Profiling - Flight Recorder Bytecode Instrumentation Unsafe!!! + Java 8 The Optimiser

Tooling – IDEs, Gradle, HdrHistogram Profiling - Flight Recorder Bytecode Instrumentation Unsafe!!! + Java 8

The Optimiser – Love/Hate

Tooling – IDEs, Gradle, HdrHistogram Profiling - Flight Recorder Bytecode Instrumentation Unsafe!!! + Java 8 The Optimiser – Love/Hate **Garbage Collection!!!**

5. What's the Roadmap?

We've done a few passes of Profiling and Tuning

Things are looking **Very** good

20+ Million 40 byte messages per second with Java client!

28+ Million 40 byte messages per second with C++ client!!!

Latency Distribution (µs)

RTT Latency by Percentile Distribution

A number of clients have tried Aeron and are staggered by the latency improvements

Persistence

Stream Query

Replication

Queueing

Services

Aeron Core

Batch Send/Recv

Performance

IPC

Monitoring

Infiniband

Multi Unicast Send

In closing...

Where can I find it?

https://github.com/real-logic/Aeron

Questions?

Blog: http://mechanical-sympathy.blogspot.com/

Twitter: @mjpt777

"Any intelligent fool can make things bigger, more complex, and more violent.

It takes a touch of genius, and a lot of courage,

to move in the opposite direction."

- Albert Einstein