
Low Pause Garbage Collection in HotSpot

John Oliver - john@jclarity.com

11th November 2015



Outline

Introduction

State of Java GC
Recent Changes
Future

Under The Hood
G1
Shenandoah
G1 vs Shenandoah

Conclusion



Introduction



What are our goals.

I Control pause times

I Control heap size

I Control throughput

I Not OOM



What HotSpot GCs are there.

I Serial

I Parallel

I CMS

I iCMS

I G1

I Shenandoah



State of Java GC



Recent Changes



Permgen to Metaspace.

I Permanent stu� is now held in native space

I Simplify con�guration

I JEP 156: G1 GC: Reduce need for full GCs

I Strings moved to the heap

I Can tune with:

I �XX:MaxMetaspaceSize
I �XX:MetaspaceSize



G1 Ready

I Stabilised

I Producing consistent results

I Not crashing



Future



The future of GC

I JEP 248: Make G1 the Default Garbage Collector

I Fundamentally changes the default behavior from high
throughput to low pause

I JEP 192: String Deduplication in G1



The future of GC

I JEP 189: Shenandoah: An Ultra-Low-Pause-Time Garbage
Collector



Remove Old GC combinations

I JEP 173: Retire Some Rarely-Used GC Combinations

I JEP 214: Remove GC Combinations Deprecated in JDK 8

I DefNew + CMS
I ParNew + SerialOld
I Incremental CMS



Speculative

I JEP draft: Parallelize the Full GC Phase in CMS

I https://bugs.openjdk.java.net/browse/JDK-8130200

I JEP 271: Uni�ed GC Logging

https://bugs.openjdk.java.net/browse/JDK-8130200


Under The Hood



Other Collectors

Parallel - High throughput
CMS - Low pause



G1



The Rise of G1

I Easier to tune (-XX:MaxGCPauseMillis=N)

I Can set pause goals

I Compacting



Heap Layout And GC

Eden

S
urvivo r 1

S
urvivo r 2

Tenured

Young Gen



G1 Heap

Eden

Old

Survivor

Empty



G1 How it works

I Mark and evacuate style

I Snapshot at the beginning

I Scan from roots
I Track mutations in the graph



G1 Heap

Eden

Old

Survivor



G1 Heap Evacuation

Eden

Old

Survivor



G1 How it works

I Mark concurrently

I Pause to evacuate

I Don't evacuate all at once

I Divide the evacuation work up and every time we have a YG
pause, do a bit of OG work



G1 How it works

CSET

Pass IHOP

YGYG

YG

Mixed

Mixed

Mixed

YG

YG



G1 How it works

Young Collections Mixed Collections

Heap passes Initiating Heap Occupancy Percent

No more eligible regions



G1 How it works

I Start Marking

I -XX:InitiatingHeapOccupancyPercent=n

I Mixed GC until no more eligible regions

I -XX:G1MixedGCLiveThresholdPercent



Tuning Parameters

Xmx/Xms Heap Size

MaxGCPauseMillis Target pause limit

G1MixedGcCountTarget Target number of mixed garbage
collections

G1OldCSetRegionThresholdPercent Limit on the number of old
regions in a cset

G1MixedGCLiveThresholdPercent Threshold for an old region to be
included in a mixed garbage collection cycle

G1HeapWastePercent Level of �oating garbage you are ok with

Ref: http://www.oracle.com/technetwork/articles/java/
g1gc-1984535.html (http://bit.ly/1AC7JDZ)

http://www.oracle.com/technetwork/articles/java/g1gc-1984535.html
http://www.oracle.com/technetwork/articles/java/g1gc-1984535.html
http://bit.ly/1AC7JDZ


The problem

I The whole of YG is cleaned during every GC

I YG is a low bound on how low you can get your pauses

I If Ergonomics does not reduce YG su�ciently, sucks to be you

I Only way to �x this is reduce the YG workload

I Best way found to do this is forcibly reduce the size of YG.



The problem

I �Object Copy� and �Ext Root Scanning� tend to dominate

I Object copy: Time spent copying live objects, when
evacuating regions.

I Ext Root Scanning: Time spent scanning external roots
(registers, thread stacks, etc)



The problem

I On our log DB (many of these are older logs):

I 40% of all �Parallel Time� is spent in Object Copy
I 50% in Ext Root Scanning

I However Object Copy seems to dominate apps that are under
GC pressure

I Little can be done to speed up this process.



The problem



The problem



Conclusion

I Easier to tune

I Bound by Object copy

I Have to pause to evacuate
I Need concurrent relocation



Shenandoah



Shenandoah

I Compacting

I Concurrently relocates objects

I �Goal is to have < 10ms pause times for 100gb+ heaps.�

I �If you are running with a heap of 20GB or less or if you are
running with fewer than eight cores, you are probably better
o� with one of the current GC algorithms�



Shenandoah

I Roman Kennke - https://rkennke.wordpress.com/

I Christine H. Flood - https://christine�ood.wordpress.com/

I http://openjdk.java.net/jeps/189



Shenandoah

I Regional heap similar to G1

I Evacuate areas with high garbage (garbage �rst)

I Non-generational



Shenandoah Phases

I Mark

I Evacuate



Concurrent Mark

I Snapshot at the beginning

I Full heap



Concurrent Relocation

I Use Brooks pointers

I All objects have a pointer that normally point to themselves
I When relocated pointer updated to point to new location
I Reading and writing threads follow pointer to the �real� object



Brooks Pointers

{foo:bar}

{foo:bar}

{foo:bar}

From To

From To



Brooks Pointers

{foo:bar}

{foo:bar}

{foo:baz}

From To

From To



Brooks Pointers

I Read(Read(pointer))

I Objects evacuated from �From� spaces, to �To� spaces

I Objects relocated on a write

I Pointer in old object updated via CAS operation



Fixing Up Pointers

I 2 Options

I Fix up pointers in the next mark (default)

I May require a lot of head room in the heap
I Pay a cost of indirection on relocated objects between GC's
I Cache miss?

I Accept another pause

I No remembered sets



Write Barrier

I Enforce only write in To space

I Perform relocation if needed

I Avoid read relocation storm

I Ensure previous pointers are still marked



Costs

I Extra heap space for forwarding pointer

I Read/Write barrier

I Pointer chasing may make memory access pattern
unpredictable

I Shenandoah devs believe overhead can be kept reasonably low



G1 vs Shenandoah



Tests

I Shenandoah

I -XX:+UseShenandoahGC

-XX:-ClassUnloadingWithConcurrentMark

-XX:MaxHeapSize=25G

I G1

I -XX:+UseG1GC -XX:MaxGCPauseMillis=100

-XX:MaxHeapSize=25G

I Environment

I Spring web app
I Load test from external machine running Gatling
I AWS, 8 core, 32GB ram



G1 vs Shenandoah

G1 Shenandoah



G1 vs Shenandoah - Response Times

G1

Shenandoah



G1 vs Shenandoah- Response Times (No Full GC)

G1

Shenandoah



G1 vs Shenandoah - GC event counts

Time(ms)

Time(ms)

E
vent C

ount
E

vent C
ount



G1 vs Shenandoah Pause Times, 0-99th Percentile

Percentile

P
a
us

e
(m

s)



G1 vs Shenandoah Pause Times, 0-100th Percentile

Percentile

P
a
us

e
(m

s)



G1 vs Shenandoah Response Times, 0-99th Percentile

Percentile

P
a
us

e
(m

s)



G1 vs Shenandoah Response Times, 0-100th Percentile

Percentile

P
a
us

e
(m

s)



Results

I Still very early days for Shenandoah

I Far younger than G1 and far less engineering time
I Has comparable results to G1

I Beware of single benchmarks and results

I Application stopped time

I STOP THE PRESSES

I Since performing this talk, following advice from Roman
Kennke I have managed to produce stable results with <60ms
pauses at the 99th percentile and no full GCs.



Conclusion



Conclusion

I G1

I Production ready
I Bound by object copy

I Shenandoah

I Looks very promising but not ready yet
I Will remove the bound on object copy
I Java 10

I Join Friends of jClarity - friends@jclarity.com

I Send in your GC logs



Questions

I john@jclarity.com

I Friends of jClarity - friends@jclarity.com


	Introduction
	State of Java GC
	Recent Changes
	Future

	Under The Hood
	G1
	Shenandoah
	G1 vs Shenandoah

	Conclusion

