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Introduction



What are our goals.

v

Control pause times

v

Control heap size

v

Control throughput
Not OOM

v



What HotSpot GCs are there.

» Serial
> Parallel
» CMS
» iCMS
» Gl

» Shenandoah



State of Java GC



Recent Changes



Permgen to Metaspace.

v

Permanent stuff is now held in native space

v

Simplify configuration
JEP 156: G1 GC: Reduce need for full GCs
Strings moved to the heap

v

v

» Can tune with:

» —XX:MaxMetaspaceSize
» —XX:MetaspaceSize



G1 Ready

» Stabilised
» Producing consistent results

» Not crashing



Future



The future of GC

» JEP 248: Make G1 the Default Garbage Collector

» Fundamentally changes the default behavior from high
throughput to low pause

» JEP 192: String Deduplication in G1



The future of GC

» JEP 189: Shenandoah: An Ultra-Low-Pause-Time Garbage
Collector



Remove Old GC combinations

» JEP 173: Retire Some Rarely-Used GC Combinations
» JEP 214: Remove GC Combinations Deprecated in JDK 8

» DefNew + CMS
» ParNew + SerialOld
> Incremental CMS



Speculative

» JEP draft: Parallelize the Full GC Phase in CMS
» https://bugs.openjdk. java.net/browse/JDK-8130200

» JEP 271: Unified GC Logging


https://bugs.openjdk.java.net/browse/JDK-8130200

Under The Hood



Other Collectors

Parallel - High throughput
CMS - Low pause



Gl

£ DA



The Rise of G1

» Easier to tune (-XX:MaxGCPauseMillis=N)
» Can set pause goals

» Compacting



Heap Layout And GC
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G1 Heap
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G1 How it works

» Mark and evacuate style
» Snapshot at the beginning

» Scan from roots
» Track mutations in the graph



G1 Heap




G1 Heap Evacuation
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G1 How it works

v

Mark concurrently

Pause to evacuate

v

» Don't evacuate all at once

v

Divide the evacuation work up and every time we have a YG
pause, do a bit of OG work



G1 How it works
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G1 How it works

Heap passes Initiating Heap Occupancy Percent

L

Young Collections Mixed Collections

No more eligible regions



G1 How it works

» Start Marking

» -XX:InitiatingHeapOccupancyPercent=n
» Mixed GC until no more eligible regions

» -XX:G1MixedGCLiveThresholdPercent



Tuning Parameters

Xmx/Xms Heap Size
MaxGCPauseMillis Target pause limit

G1MixedGecCountTarget Target number of mixed garbage
collections

G10IdCSetRegionThresholdPercent Limit on the number of old
regions in a cset

G1MixedGCLiveThresholdPercent Threshold for an old region to be
included in a mixed garbage collection cycle

G1HeapWastePercent Level of floating garbage you are ok with

Ref: http://www.oracle.com/technetwork/articles/java/
glgc-1984535.html (http://bit.1ly/1AC7JIDZ)


http://www.oracle.com/technetwork/articles/java/g1gc-1984535.html
http://www.oracle.com/technetwork/articles/java/g1gc-1984535.html
http://bit.ly/1AC7JDZ

The problem

v

The whole of YG is cleaned during every GC

v

YG is a low bound on how low you can get your pauses

v

If Ergonomics does not reduce YG sufficiently, sucks to be you

v

Only way to fix this is reduce the YG workload

v

Best way found to do this is forcibly reduce the size of YG.



The problem

> “Object Copy” and “Ext Root Scanning” tend to dominate

» Object copy: Time spent copying live objects, when
evacuating regions.

» Ext Root Scanning: Time spent scanning external roots
(registers, thread stacks, etc)



The problem

> On our log DB (many of these are older logs):

» 40% of all “Parallel Time" is spent in Object Copy
» 50% in Ext Root Scanning

» However Object Copy seems to dominate apps that are under
GC pressure

» Little can be done to speed up this process.



The problem
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The problem
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Conclusion

» Easier to tune
» Bound by Object copy

» Have to pause to evacuate
» Need concurrent relocation



Shenandoah



Shenandoah

v

Compacting
» Concurrently relocates objects
» “Goal is to have < 10ms pause times for 100gb+ heaps.”

> “If you are running with a heap of 20GB or less or if you are
running with fewer than eight cores, you are probably better
off with one of the current GC algorithms”



Shenandoah

» Roman Kennke - https://rkennke.wordpress.com/
» Christine H. Flood - https://christineflood.wordpress.com/
> http://openjdk.java.net/jeps/189



Shenandoah

> Regional heap similar to G1
» Evacuate areas with high garbage (garbage first)

» Non-generational



Shenandoah Phases

» Mark

» Evacuate



Concurrent Mark

» Snapshot at the beginning
» Full heap



Concurrent Relocation

» Use Brooks pointers

» All objects have a pointer that normally point to themselves
» When relocated pointer updated to point to new location
» Reading and writing threads follow pointer to the “real” object



Brooks Pointers

From

~
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To
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Brooks Pointers
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Brooks Pointers

v

Read(Read(pointer))
Objects evacuated from “From” spaces, to “To” spaces

v

v

Objects relocated on a write

v

Pointer in old object updated via CAS operation



Fixing Up Pointers

» 2 Options
» Fix up pointers in the next mark (default)

> May require a lot of head room in the heap
» Pay a cost of indirection on relocated objects between GC’s
» Cache miss?

» Accept another pause

» No remembered sets



Write Barrier

» Enforce only write in To space
» Perform relocation if needed

» Avoid read relocation storm

» Ensure previous pointers are still marked



Costs

v

Extra heap space for forwarding pointer
Read /Write barrier

Pointer chasing may make memory access pattern
unpredictable

v

v

v

Shenandoah devs believe overhead can be kept reasonably low



G1 vs Shenandoah



Tests

» Shenandoah

» -XX:4+UseShenandoahGC
-XX:-ClassUnloadingWithConcurrentMark
-XX:MaxHeapSize=25G

» -XX:4+UseG1GC -XX:MaxGCPauseMillis=100
-XX:MaxHeapSize=25G

» Environment

> Spring web app
» Load test from external machine running Gatling
» AWS, 8 core, 32GB ram



G1 vs Shenandoah
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G1 vs Shenandoah - Response Times

G1
Response Time Percentiles over Time (OK)
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G1 vs Shenandoah- Response Times (No Full GC)

G1
Response Time Percentiles over Time (OK)
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G1 vs Shenandoah - GC event counts

Shenandoah
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G1 vs Shenandoah Pause Times, 0-99th Percentile
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G1 vs Shenandoah Pause Times, 0-100th Percentile
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G1 vs Shenandoah Response Times, 0-99th Percentile
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G1 vs Shenandoah Response Times, 0-100th Percentile
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Results

» Still very early days for Shenandoah

» Far younger than G1 and far less engineering time
» Has comparable results to G1

» Beware of single benchmarks and results
» Application stopped time
» STOP THE PRESSES

» Since performing this talk, following advice from Roman
Kennke | have managed to produce stable results with <60ms
pauses at the 99th percentile and no full GCs.



Conclusion



Conclusion

» G1

» Production ready
» Bound by object copy

Shenandoah

> Looks very promising but not ready yet
» Will remove the bound on object copy
» Java 10

v

v

Join Friends of jClarity - friends@jclarity.com

v

Send in your GC logs



Questions

» john@jclarity.com
» Friends of jClarity - friends@jclarity.com
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