Low Pause Garbage Collection in HotSpot

John Oliver - john@jclarity.com

11th November 2015

Outline

Introduction

State of Java GC
Recent Changes
Future

Under The Hood
Gl
Shenandoah
G1 vs Shenandoah

Conclusion

Introduction

What are our goals.

v

Control pause times

v

Control heap size

v

Control throughput
Not OOM

v

What HotSpot GCs are there.

» Serial
> Parallel
» CMS
» iCMS
» Gl

» Shenandoah

State of Java GC

Recent Changes

Permgen to Metaspace.

v

Permanent stuff is now held in native space

v

Simplify configuration
JEP 156: G1 GC: Reduce need for full GCs
Strings moved to the heap

v

v

» Can tune with:

» —XX:MaxMetaspaceSize
» —XX:MetaspaceSize

G1 Ready

» Stabilised
» Producing consistent results

» Not crashing

Future

The future of GC

» JEP 248: Make G1 the Default Garbage Collector

» Fundamentally changes the default behavior from high
throughput to low pause

» JEP 192: String Deduplication in G1

The future of GC

» JEP 189: Shenandoah: An Ultra-Low-Pause-Time Garbage
Collector

Remove Old GC combinations

» JEP 173: Retire Some Rarely-Used GC Combinations
» JEP 214: Remove GC Combinations Deprecated in JDK 8

» DefNew + CMS
» ParNew + SerialOld
> Incremental CMS

Speculative

» JEP draft: Parallelize the Full GC Phase in CMS
» https://bugs.openjdk. java.net/browse/JDK-8130200

» JEP 271: Unified GC Logging

https://bugs.openjdk.java.net/browse/JDK-8130200

Under The Hood

Other Collectors

Parallel - High throughput
CMS - Low pause

Gl

£ DA

The Rise of G1

» Easier to tune (-XX:MaxGCPauseMillis=N)
» Can set pause goals

» Compacting

Heap Layout And GC

Eden

T JOAAINS

Z loAnns

Tenured

Young Gen

G1 Heap

Eden

Survivor

Empty

G1 How it works

» Mark and evacuate style
» Snapshot at the beginning

» Scan from roots
» Track mutations in the graph

G1 Heap

G1 Heap Evacuation

Eden

Survivor

G1 How it works

v

Mark concurrently

Pause to evacuate

v

» Don't evacuate all at once

v

Divide the evacuation work up and every time we have a YG
pause, do a bit of OG work

G1 How it works

YG

YG

YG

Mixed

Mixed

Mixed

YG

Doooorann INNEEEEE
Pass IHOP i
DoOoofann :llllllll
DOO00Cann illllllll
O0ODCONEEEE : EEEEEE
DDDDDDIIIIIE EENEN
ERmanE 111K EENEN
R] EEEEEE

CSET

G1 How it works

Heap passes Initiating Heap Occupancy Percent

L

Young Collections Mixed Collections

No more eligible regions

G1 How it works

» Start Marking

» -XX:InitiatingHeapOccupancyPercent=n
» Mixed GC until no more eligible regions

» -XX:G1MixedGCLiveThresholdPercent

Tuning Parameters

Xmx/Xms Heap Size
MaxGCPauseMillis Target pause limit

G1MixedGecCountTarget Target number of mixed garbage
collections

G10IdCSetRegionThresholdPercent Limit on the number of old
regions in a cset

G1MixedGCLiveThresholdPercent Threshold for an old region to be
included in a mixed garbage collection cycle

G1HeapWastePercent Level of floating garbage you are ok with

Ref: http://www.oracle.com/technetwork/articles/java/
glgc-1984535.html (http://bit.1ly/1AC7JIDZ)

http://www.oracle.com/technetwork/articles/java/g1gc-1984535.html
http://www.oracle.com/technetwork/articles/java/g1gc-1984535.html
http://bit.ly/1AC7JDZ

The problem

v

The whole of YG is cleaned during every GC

v

YG is a low bound on how low you can get your pauses

v

If Ergonomics does not reduce YG sufficiently, sucks to be you

v

Only way to fix this is reduce the YG workload

v

Best way found to do this is forcibly reduce the size of YG.

The problem

> “Object Copy” and “Ext Root Scanning” tend to dominate

» Object copy: Time spent copying live objects, when
evacuating regions.

» Ext Root Scanning: Time spent scanning external roots
(registers, thread stacks, etc)

The problem

> On our log DB (many of these are older logs):

» 40% of all “Parallel Time" is spent in Object Copy
» 50% in Ext Root Scanning

» However Object Copy seems to dominate apps that are under
GC pressure

» Little can be done to speed up this process.

The problem

Eie i view iy
jClarity censum &

Heap After GC
Heap Before GC
Tenured After GC
9% Heap Before GC
Aggregate Allocation
Alocation Rates
Recovery Rates

Pause Times
Pause Time
Aggregate Pause Times
% Time in GC.

Phases

Parallel Phases

U Summary

G1 Concurrent Mark Durations

GC Cause
TERURING
Tenuring Summary
Tenuring Distrioution
Tenuring

Tenuring Threshold

[Pl

Phase Times (miliseconds)

AvoQ
Phase Times
;) M
26,000 28.000 30,000 32,000 34,000 35,000 35,000 40,000 42,000 44,000
Time (ms)
 SATB Filtering _Termination -~ Scan RS - Ext oot Scanning - Object Copy - Update AS

The problem

Ele Edi View Lielp

jClarity censum &

=

0 Hign kemel times
@ Log duration 48 mirutes 31 seconds
+ GRAPHS AND DATA

H

=

Heap After GC

9% Heap Before GC

jaregate Alocation
Alocation Rates
Recovery Rates
Pause Times,

Pause Time

9% Parallel Phase Times (%)

Aggregate Pause Times
% Time in GC

Phases
Paralel Phases
Other Phases

Phases %

Paralel Phases %

Other Phases %

CPU summary

GL Cancurrent Mar Curations

1 statistcs

Avo@

% Parallel Phase Times

i
y
. e 4 i x Y & &,
1600 1800 2000 2200 2400 2600 2800 2000 3300 3.400 3600 2800 4000 4300 4.400
“

= SATs Fikering Termination Update RS+ Scan S+ Ext Root Scanning v Object Copy + Code Root Scanming]

Conclusion

» Easier to tune
» Bound by Object copy

» Have to pause to evacuate
» Need concurrent relocation

Shenandoah

Shenandoah

v

Compacting
» Concurrently relocates objects
» “Goal is to have < 10ms pause times for 100gb+ heaps.”

> “If you are running with a heap of 20GB or less or if you are
running with fewer than eight cores, you are probably better
off with one of the current GC algorithms”

Shenandoah

» Roman Kennke - https://rkennke.wordpress.com/
» Christine H. Flood - https://christineflood.wordpress.com/
> http://openjdk.java.net/jeps/189

Shenandoah

> Regional heap similar to G1
» Evacuate areas with high garbage (garbage first)

» Non-generational

Shenandoah Phases

» Mark

» Evacuate

Concurrent Mark

» Snapshot at the beginning
» Full heap

Concurrent Relocation

» Use Brooks pointers

» All objects have a pointer that normally point to themselves
» When relocated pointer updated to point to new location
» Reading and writing threads follow pointer to the “real” object

Brooks Pointers

From

~

{foo:bar}

To

From

{foo:bar}

To

{foo:bar}

Brooks Pointers

From

~

{foo:bar}

To

From

{foo:bar}

To

{foo:baz}

Brooks Pointers

v

Read(Read(pointer))
Objects evacuated from “From” spaces, to “To” spaces

v

v

Objects relocated on a write

v

Pointer in old object updated via CAS operation

Fixing Up Pointers

» 2 Options
» Fix up pointers in the next mark (default)

> May require a lot of head room in the heap
» Pay a cost of indirection on relocated objects between GC’s
» Cache miss?

» Accept another pause

» No remembered sets

Write Barrier

» Enforce only write in To space
» Perform relocation if needed

» Avoid read relocation storm

» Ensure previous pointers are still marked

Costs

v

Extra heap space for forwarding pointer
Read /Write barrier

Pointer chasing may make memory access pattern
unpredictable

v

v

v

Shenandoah devs believe overhead can be kept reasonably low

G1 vs Shenandoah

Tests

» Shenandoah

» -XX:4+UseShenandoahGC
-XX:-ClassUnloadingWithConcurrentMark
-XX:MaxHeapSize=25G

» -XX:4+UseG1GC -XX:MaxGCPauseMillis=100
-XX:MaxHeapSize=25G

» Environment

> Spring web app
» Load test from external machine running Gatling
» AWS, 8 core, 32GB ram

G1 vs Shenandoah

Gl Shenandoah

Indicators [Indicators |

¥ 7.5M |
¢ £

i P -
i
: 5
= z

25 —|

e Mgt el e temoms | somser< | t>1200ms e
1200ms
o = = =

DA

G1 vs Shenandoah - Response Times

G1
Response Time Percentiles over Time (OK)
2zoon | 1m [10m| an 7]

7

S [| w0
2 T i} 2
5 Wedvesday,Oct21, 1200 %
£ 50 % 8
2 @
&

11:20 11:30
CU2s% WNs0% BN 75% M 80%

1140 1
M s5% N 90%

Shenandoah

Zoon i 10m] 1]

H
g

Response Time (ms)
E
el
| —
]
siasn aAnOY

ok y. Ak M LM b Lol " m Lokl Bbedbendbies u..‘....i._ " \o

) T T T
17:40 17:50 1800 18:10 18:20
min 0 25% (s0% (N75% MMeow MMesw MNoow Mo ME9ow MEmax — AlUsers

T
17:30

DA

G1 vs Shenandoah- Response Times (No Full GC)

G1
Response Time Percentiles over Time (OK)

zoon [1m [10m] ah [
7
Soo [| s
2 T It 2
= Wednesday, Oct 21, 1200 2
HED %8
g
&
o o
11:30 11:40 11:50 *85%: 29
509 750 MMeo MMesy% MNoow MNosk oo *90% 49
* 95%: 92
Shenandoah
Response Time Percentiles over Time (OK)
Zoorn [1m [10m] 3h | An |
g
= 50
£
F H
3 =
; =3
g
©

17:40

1 1800 1810 18:20
50 (075% MMgow MNes% N Moss MEoow MEmax — AllUsers

G1 vs Shenandoah - GC event counts

Shenandoah
6000 [T T T T T
5000 [: :
4000

3000 [

UN0D JUsA3

2000 [y
1000

0 25 50 75 100 125 150 175 200
Time(ms)

G1

6000 [T T T
5000 '
4000
3000
2000

UN0D JuaAl

1000

0 25 50 75 100 125 150 175 200

Time(ms)

G1 vs Shenandoah Pause Times, 0-99th Percentile

140

120

100|

80|

Pause(ms)

60|

4071

2071

0 20 40 60 80 100

Percentile

G1 vs Shenandoah Pause Times, 0-100th Percentile

10000

8000 [; L”m”mmvﬂ ;

6000

Pause(ms)

4000 |- — — — —

2000 [2 %_m _m._g %

0 20 40 60 80 100

Percentile

G1 vs Shenandoah Response Times, 0-99th Percentile

250

200 [

Pause(ms)

L
0 20 40 60

i
80 100

Percentile

G1 vs Shenandoah Response Times, 0-100th Percentile

10000

8000 [

6000 [

Pause(ms)

4000 [

2000

0 20 40 60 80 100

Percentile

Results

» Still very early days for Shenandoah

» Far younger than G1 and far less engineering time
» Has comparable results to G1

» Beware of single benchmarks and results
» Application stopped time
» STOP THE PRESSES

» Since performing this talk, following advice from Roman
Kennke | have managed to produce stable results with <60ms
pauses at the 99th percentile and no full GCs.

Conclusion

Conclusion

» G1

» Production ready
» Bound by object copy

Shenandoah

> Looks very promising but not ready yet
» Will remove the bound on object copy
» Java 10

v

v

Join Friends of jClarity - friends@jclarity.com

v

Send in your GC logs

Questions

» john@jclarity.com
» Friends of jClarity - friends@jclarity.com

	Introduction
	State of Java GC
	Recent Changes
	Future

	Under The Hood
	G1
	Shenandoah
	G1 vs Shenandoah

	Conclusion

