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Introduction



What are our goals.

I Control pause times

I Control heap size

I Control throughput

I Not OOM



What HotSpot GCs are there.

I Serial

I Parallel

I CMS

I iCMS

I G1

I Shenandoah



State of Java GC



Recent Changes



Permgen to Metaspace.

I Permanent stu� is now held in native space

I Simplify con�guration

I JEP 156: G1 GC: Reduce need for full GCs

I Strings moved to the heap

I Can tune with:

I �XX:MaxMetaspaceSize
I �XX:MetaspaceSize



G1 Ready

I Stabilised

I Producing consistent results

I Not crashing



Future



The future of GC

I JEP 248: Make G1 the Default Garbage Collector

I Fundamentally changes the default behavior from high
throughput to low pause

I JEP 192: String Deduplication in G1



The future of GC

I JEP 189: Shenandoah: An Ultra-Low-Pause-Time Garbage
Collector



Remove Old GC combinations

I JEP 173: Retire Some Rarely-Used GC Combinations

I JEP 214: Remove GC Combinations Deprecated in JDK 8

I DefNew + CMS
I ParNew + SerialOld
I Incremental CMS



Speculative

I JEP draft: Parallelize the Full GC Phase in CMS

I https://bugs.openjdk.java.net/browse/JDK-8130200

I JEP 271: Uni�ed GC Logging

https://bugs.openjdk.java.net/browse/JDK-8130200


Under The Hood



Other Collectors

Parallel - High throughput
CMS - Low pause



G1



The Rise of G1

I Easier to tune (-XX:MaxGCPauseMillis=N)

I Can set pause goals

I Compacting



Heap Layout And GC
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G1 How it works

I Mark and evacuate style

I Snapshot at the beginning

I Scan from roots
I Track mutations in the graph
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G1 Heap Evacuation
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G1 How it works

I Mark concurrently

I Pause to evacuate

I Don't evacuate all at once

I Divide the evacuation work up and every time we have a YG
pause, do a bit of OG work



G1 How it works
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G1 How it works

Young Collections Mixed Collections

Heap passes Initiating Heap Occupancy Percent

No more eligible regions



G1 How it works

I Start Marking

I -XX:InitiatingHeapOccupancyPercent=n

I Mixed GC until no more eligible regions

I -XX:G1MixedGCLiveThresholdPercent



Tuning Parameters

Xmx/Xms Heap Size

MaxGCPauseMillis Target pause limit

G1MixedGcCountTarget Target number of mixed garbage
collections

G1OldCSetRegionThresholdPercent Limit on the number of old
regions in a cset

G1MixedGCLiveThresholdPercent Threshold for an old region to be
included in a mixed garbage collection cycle

G1HeapWastePercent Level of �oating garbage you are ok with

Ref: http://www.oracle.com/technetwork/articles/java/
g1gc-1984535.html (http://bit.ly/1AC7JDZ)

http://www.oracle.com/technetwork/articles/java/g1gc-1984535.html
http://www.oracle.com/technetwork/articles/java/g1gc-1984535.html
http://bit.ly/1AC7JDZ


The problem

I The whole of YG is cleaned during every GC

I YG is a low bound on how low you can get your pauses

I If Ergonomics does not reduce YG su�ciently, sucks to be you

I Only way to �x this is reduce the YG workload

I Best way found to do this is forcibly reduce the size of YG.



The problem

I �Object Copy� and �Ext Root Scanning� tend to dominate

I Object copy: Time spent copying live objects, when
evacuating regions.

I Ext Root Scanning: Time spent scanning external roots
(registers, thread stacks, etc)



The problem

I On our log DB (many of these are older logs):

I 40% of all �Parallel Time� is spent in Object Copy
I 50% in Ext Root Scanning

I However Object Copy seems to dominate apps that are under
GC pressure

I Little can be done to speed up this process.



The problem



The problem



Conclusion

I Easier to tune

I Bound by Object copy

I Have to pause to evacuate
I Need concurrent relocation



Shenandoah



Shenandoah

I Compacting

I Concurrently relocates objects

I �Goal is to have < 10ms pause times for 100gb+ heaps.�

I �If you are running with a heap of 20GB or less or if you are
running with fewer than eight cores, you are probably better
o� with one of the current GC algorithms�



Shenandoah

I Roman Kennke - https://rkennke.wordpress.com/

I Christine H. Flood - https://christine�ood.wordpress.com/

I http://openjdk.java.net/jeps/189



Shenandoah

I Regional heap similar to G1

I Evacuate areas with high garbage (garbage �rst)

I Non-generational



Shenandoah Phases

I Mark

I Evacuate



Concurrent Mark

I Snapshot at the beginning

I Full heap



Concurrent Relocation

I Use Brooks pointers

I All objects have a pointer that normally point to themselves
I When relocated pointer updated to point to new location
I Reading and writing threads follow pointer to the �real� object



Brooks Pointers
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Brooks Pointers
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Brooks Pointers

I Read(Read(pointer))

I Objects evacuated from �From� spaces, to �To� spaces

I Objects relocated on a write

I Pointer in old object updated via CAS operation



Fixing Up Pointers

I 2 Options

I Fix up pointers in the next mark (default)

I May require a lot of head room in the heap
I Pay a cost of indirection on relocated objects between GC's
I Cache miss?

I Accept another pause

I No remembered sets



Write Barrier

I Enforce only write in To space

I Perform relocation if needed

I Avoid read relocation storm

I Ensure previous pointers are still marked



Costs

I Extra heap space for forwarding pointer

I Read/Write barrier

I Pointer chasing may make memory access pattern
unpredictable

I Shenandoah devs believe overhead can be kept reasonably low



G1 vs Shenandoah



Tests

I Shenandoah

I -XX:+UseShenandoahGC

-XX:-ClassUnloadingWithConcurrentMark

-XX:MaxHeapSize=25G

I G1

I -XX:+UseG1GC -XX:MaxGCPauseMillis=100

-XX:MaxHeapSize=25G

I Environment

I Spring web app
I Load test from external machine running Gatling
I AWS, 8 core, 32GB ram



G1 vs Shenandoah

G1 Shenandoah



G1 vs Shenandoah - Response Times

G1
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G1 vs Shenandoah- Response Times (No Full GC)
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G1 vs Shenandoah - GC event counts
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G1 vs Shenandoah Pause Times, 0-99th Percentile
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G1 vs Shenandoah Pause Times, 0-100th Percentile
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G1 vs Shenandoah Response Times, 0-99th Percentile
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Results

I Still very early days for Shenandoah

I Far younger than G1 and far less engineering time
I Has comparable results to G1

I Beware of single benchmarks and results

I Application stopped time

I STOP THE PRESSES

I Since performing this talk, following advice from Roman
Kennke I have managed to produce stable results with <60ms
pauses at the 99th percentile and no full GCs.



Conclusion



Conclusion

I G1

I Production ready
I Bound by object copy

I Shenandoah

I Looks very promising but not ready yet
I Will remove the bound on object copy
I Java 10

I Join Friends of jClarity - friends@jclarity.com

I Send in your GC logs



Questions

I john@jclarity.com

I Friends of jClarity - friends@jclarity.com
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